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The recent discovery of dark energy has prompted an investigation of ways in which

the accelerated expansion of the universe can be realized. In this dissertation, we

present two separate projects related to dark energy. The first project analyzes a class

of braneworld models in which multiple branes float in a five-dimensional anti-de Sitter

bulk, while the second investigates a class of dark energy models from an effective

field theory perspective.

Investigations of models including extra dimensions have led to modifications of

gravity involving a number of interesting features. In particular, the Randall-Sundrum

model is well-known for achieving an amelioration of the hierarchy problem. However,

the basic model relies on Minkowski branes and is subject to solar system constraints in

the absence of a radion stabilization mechanism. We present a method by which a four-

dimensional low-energy description can be obtained for braneworld scenarios, allowing

for a number of generalizations to the original models. This method is applied to

orbifolded and uncompactified N -brane models, deriving an effective four-dimensional

action. The parameter space of this theory is constrained using observational evidence,

and it is found that the generalizations do not weaken solar system constraints on the

original model. Furthermore, we find that general N -brane systems are qualitatively

similar to the two-brane case, and do not naturally lead to a viable dark energy model.

We next investigate dark energy models using effective field theory techniques. We

describe dark energy through a quintessence field, employing a derivative expansion.

To the accuracy of the model, we find transformations to write the description in



a form involving no higher-order derivatives in the equations of motion. We use a

pseudo-Nambu-Goldstone boson construction to motivate the theory, and find the

regime of validity and scaling of the operators using this. The regime of validity

is restricted to a class of models for which both the derivative expansion and EFT

construction is valid, which forces the quintessence potential to be the dominant source

of energy-density in this class of model. The resulting effective theory is described by

nine free functions.
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Braneworld Models

These conventions are specific to Chapters 2 and 3, which investigate braneworld
models.

• The metric g refers to a five-dimensional metric, while the metric h refers to a
four-dimensional metric.

• Many functions, coordinates and parameters will be indexed by some index n in
this work. For coordinates and parameters, the index will always be in the lower
right, e.g, xn. For functions, the index will be in the upper left, e.g, gn αβ.

• We use capital Greek letters (Γ,Σ,Θ) to index five-dimensional tensors in arbitrary
coordinate systems. When we specialize our coordinate system, we will use
lowercase Greek letters (α, β, γ) to index five-dimensional tensors. We use Roman
letters (a, b, c) for four-dimensional tensors.

• The stress-energy tensor for matter on a brane is defined as the following.

Sn m[ hn ab + δ hn ab, φ
n ] = Sn m[ hn ab, φ

n ]− 1

2

∫
d4wn

√
− hn Tn abδ h

n ab (0.0.1)

Dark Energy Models

These conventions are specific to Chapter 4, which investigates dark energy models.

• We use lowercase Greek letters (α, β, γ) to index all four-dimensional tensors.

• The Einstein and Jordan frame metrics are gµν and ḡµν respectively, and the
corresponding derivative operators are ∇µ and ∇̄µ.

• We use the usual abbreviations (∇φ)2 = gµν∇µφ∇νφ and �φ = ∇µ∇µφ.

• Primes denote derivatives with respect to the appropriate scalar field (almost
always φ), as in U ′(φ).

• We take εµνλρ to be the antisymmetric tensor with ε0123 = 1/
√
−g.

• We define the (Jordan-frame) stress-energy tensor T ν
µ in the usual way in terms

of the Jordan-frame metric ḡµν that appears in the matter action Sm:

Sm[ḡµν + δḡµν , ψm]− Sm[ḡµν , ψm] =
1

2

∫
d4x
√
−ḡT ν

µ ḡµλδḡλν +O(δḡ2). (0.0.2)

Note that this definition differs from the definition used in the braneworld project.

We then define T = T µ
µ , and define the quantities Tµν and T µν by raising and

lowering indices with the Einstein-frame metric gµν , which is related to ḡµν via
Eq. (4.2.4). To zeroth-order in ε this stress energy tensor obeys the conservation
law

e−2α∇λ(e
2αT λσ) =

1

2
α′T∇σφ+O(ε). (0.0.3)

xx



Chapter 1

Introduction

Contents

1.1 Theoretical Underpinnings of Cosmology . . . . . . . . . 1

1.2 Experimental Evidence for Dark Energy . . . . . . . . . 3

1.3 Theory Space . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.4 Other Issues in Theoretical Physics . . . . . . . . . . . . 10

1.5 Structure of this Dissertation . . . . . . . . . . . . . . . . 11

The recent discovery of the accelerating expansion of the Universe [9, 10] has

prompted many theoretical speculations about the underlying mechanism. The most

likely mechanism is a cosmological constant, which is the simplest model and is in good

agreement with observational data. More complicated models involve new dynamical

sources of gravity that act as dark energy, and/or modifications to general relativity

on large scales.

1.1 Theoretical Underpinnings of Cosmology

We begin with a very brief review of ΛCDM cosmology (see, e.g., [11]). On the

largest scales, the universe appears to be very homogeneous and isotropic. Modelling

the universe as a homogeneous and isotropic background with perturbations, it is

straightforward to show that the background metric must be that of a Friedmann-

1



Robertson-Walker (FRW) universe.

ds2 = −dt2 + a(t)2

(
dr2

1− kr2
+ r2dΩ2

)
(1.1.1)

Here, a(t) is known as the scale factor of the universe scaled such that a(t) = 1 today,

and k describes the curvature of the universe. Current observations suggest that the

universe is very close to flat, corresponding to k ∼ 0.

The Einstein equations, using this metric and the assumptions of homogeneity and

isotropy lead to the Friedmann equations.

H2 =
8πG

3
ρ− k

a2
(1.1.2)

ä

a
= −4πG

3
(ρ+ 3P ) +

Λ

3
(1.1.3)

Here, H = ȧ/a is the Hubble factor, ρ and P are the average energy density and

pressure of everything in the universe (excluding curvature), and Λ represents the

cosmological constant.

The statement that the universe’s expansion is accelerating corresponds to ä/a

in Eq. (1.1.3) being positive. Evidently, this requires either the existence of a

(positive) cosmological constant, or a dominant form of matter with equation of state

w = P/ρ < −1/3.

From Eq. (1.1.2), we can define a critical density today for which there is no

curvature

ρc =
8πGρ

3H2
0

(1.1.4)

where H0 is the Hubble factor today, also known as the “Hubble constant”. Dividing

the Friedmann equation by H2
0 , splitting the energy density into a cosmological

constant, matter (scaling as a(t)−3) and photons (scaling as a(t)−4), and writing these

densities in terms of the density fractions ΩX = ρX/ρc, we have(
H

H0

)2

= Ωmattera
−3 + Ωγa

−4 + ΩΛ + Ωka
−2 (1.1.5)
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where Ωk = −3k/8πGρc. Evaluating this equation today yields

1 = Ωmatter + Ωγ + ΩΛ + Ωk, (1.1.6)

and so we may think of ΩX as the fraction of the universe made up of X today.

WMAP 7 year results [12] indicate that Ωmatter ∼ 0.27, Ωγ ∼ 0, ΩΛ ∼ 0.73, and

Ωk ∼ 0. The universe is thus presently dominated by the presence of dark energy,

which will continue to become more important in the future. It can be seen that the

large scale future of the universe is intimately related to the behavior of dark energy.

1.2 Experimental Evidence for Dark Energy

Following the initial announcements of the accelerating expansion of the universe

in 1998, a number of separate experimental signatures of dark energy have been

discovered. We briefly review the different experimental evidence for dark energy to

date. Figure 1 shows how different methods combine to produce strong evidence for

the phenomenon.

I Type 1a Supernovae

Supernovae are very bright explosions of stars, and have been classified into different

classes depending on their properties, which in turn correspond to the original compo-

sition of the star. Type Ia supernovae occur when white dwarfs accrete matter beyond

the Chandrasekhar mass and explode. Because the mass of all such objects is the same

when it explodes, Type Ia supernovae are expected to explode with almost identical

signatures, leading them to be called “standard candles”. In particular, the luminosity

L is constant between such events1, and so measuring the flux from the supernova

1Or at least, is standardizable between such events.
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Figure 1: Constraints on the ΩΛ vs Ωmatter plot, showing contributions from the
cosmic microwave background, Type Ia supernovae, and baryon acoustic
oscillations (excluding systematic errors). Note that the three methods are
highly complementary. Figure from Ref. [13]. Reproduced by permission
of the AAS.
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lowed up. This approach also made it possible to use the
Hubble Space Telescope for follow-up light-curve observa-
tions, because we could specify in advance the one-square-
degree patch of sky in which our wide-field imager would
find its catch of supernovae. Such specificity is a require-
ment for advance scheduling of the HST. By now, the
Berkeley team, had grown to include some dozen collabo-
rators around the world, and was called Supernova Cos-
mology Project (SCP). 

A community effort
Meanwhile, the whole supernova community was making
progress with the understanding of relatively nearby su-
pernovae. Mario Hamuy and coworkers at Cerro Tololo
took a major step forward by finding and studying many
nearby (low-redshift) type Ia supernovae.7 The resulting
beautiful data set of 38 supernova light curves (some
shown in figure 1) made it possible to check and improve
on the results of Branch and Phillips, showing  that type
Ia peak brightness could be standardized.6,7

The new supernovae-on-demand techniques that per-
mitted systematic study of distant supernovae and the im-
proved understanding of brightness variations among
nearby type Ia’s spurred the community to redouble its ef-
forts. A second collaboration, called the High-Z Supernova
Search and led by Brian Schmidt of Australia’s Mount
Stromlo Observatory, was formed at the end of 1994. The
team includes many veteran supernova experts. The two
rival teams raced each other over the next few years—oc-
casionally covering for each other with observations when
one of us had bad weather—as we all worked feverishly to
find and study the guaranteed on-demand batches of 
supernovae.

At the beginning of 1997, the SCP team presented the
results for our first seven high-redshift supernovae.8 These
first results demonstrated the cosmological analysis tech-
niques from beginning to end. They were suggestive of an
expansion slowing down at about the rate expected for the
simplest inflationary Big Bang models, but with error bars
still too large to permit definite conclusions.

By the end of the year, the error bars began to tighten,
as both groups now submitted papers with a few more su-
pernovae, showing evidence for much less than the ex-
pected slowing of the cosmic expansion.9–11 This was be-
ginning to be a problem for the simplest inflationary
models with a universe dominated by its mass content.

Finally, at the beginning of 1998, the two groups pre-
sented the results shown in figure 3.12,13

What’s wrong with faint supernovae? 
The faintness—or distance—of the high-redshift super-
novae in figure 3 was a dramatic surprise. In the simplest
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Exploding White Dwarfs

Aplausible, though unconfirmed, scenario would explain
how all type Ia supernovae come to be so much alike,

given the varied range of stars they start from. A lightweight
star like the Sun uses up its nuclear fuel in 5 or 10 billion
years. It then shrinks to an Earth-sized ember, a white dwarf,
with its mass (mostly carbon and oxygen) supported against
further collapse by electron degeneracy pressure. Then it
begins to quietly fade away.

But the story can have a more dramatic finale if the white
dwarf is in a close binary orbit with a large star that is still
actively burning its nuclear fuel. If conditions of proximity
and relative mass are right, there will be a steady stream of
material from the active star slowly accreting onto the white
dwarf. Over millions of years, the dwarf’s mass builds up
until it reaches the critical mass (near the Chandrasekhar
limit, about 1.4 solar masses) that triggers a runaway ther-
monuclear explosion—a type Ia supernova.

This slow, relentless approach to a sudden cataclysmic
conclusion at a characteristic mass erases most of the orig-
inal differences among the progenitor stars. Thus the light
curves (see figure 1) and spectra of all type Ia supernovae
are remarkably similar. The differences we do occasionally
see presumably reflect variations on the common theme—
including differences, from one progenitor star to the next,
of accretion and rotation rates, or different carbon-to-oxy-
gen ratios.

Figure 3. Observed magnitude
versus redshift is plotted for

well-measures distant12,13 and
(in the inset) nearby7 type Ia su-
pernovae. For clarity, measure-
ments at the same redshift are

combined. At redshifts beyond
z = 0.1 (distances greater than
about 109 light-years), the cos-

mological predictions (indi-
cated by the curves) begin to

diverge, depending on the as-
sumed cosmic densities of

mass and vacuum energy. The
red curves represent models

with zero vacuum energy and
mass densities ranging from the
critical density rc down to zero
(an empty cosmos). The best fit

(blue line) assumes a mass 
density of about rc /3 plus a

vacuum energy density twice
that large—implying an accel-

erating cosmic expansion.

the

d

d

Figure 2: Luminosity of observed Type Ia supernovae plotted against redshift, in-
cluding a comparison to dependence on expansion history of the universe.
Figure from Ref. [14]. Reprinted by permission of the AIP.

allows the calculation of the luminosity distance from f = L/4πd2
L. Because the lumi-

nosity distance relation depends on the integrated cosmological history, measurements

of Type 1a supernovae at different redshifts allow for the recent cosmological history

to be ascertained. Figure 2 presents early evidence of the accelerated expansion of the

universe.

II Baryon Acoustic Oscillations

In the early hot universe, pressure waves from density fluctuations were able to travel

through the primordial medium only a certain distance before decoupling, at which

point photons decoupled from the newly-formed neutral hydrogen. This sound horizon

imprints a characteristic scale on the matter distribution, and can be measured from

perturbations in the cosmic microwave background (CMB) radiation. Assuming that

these initial perturbations seed galaxy formation, this characteristic scale can then

be inferred today from a statistical analysis of galaxy surveys. Identifying the sound

5
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Fig. 3.— Contour plots of ΩΛ vs. ΩM for 1 + w = 0 for SALT, with no assumptions

about flatness. The concordance cosmology (ΩΛ= 0.73, ΩM= 0.27) is shown as a dot. The

top panel shows how adding the CfA3 sample considerably narrows the contours along the

ΩΛ axis. The bottom panel shows the combination of the SN contours with the BAO prior,

with the flat-universe straight line overplotted for reference.

Figure 3: Recent constraints on the ΩΛ vs Ωmatter plot, comparing results from Type
Ia supernovae and baryon acoustic oscillations. Figure from Ref. [15].
Reproduced by permission of the AAS.

horizon scale as a function of redshift of the galaxies allows the identification of the

expansion history of that scale, and therefore the expansion history of H as a function

of redshift. This method is particularly useful as a complementary probe to supernova

measurements, as can be seen in Fig. 3.

III Weak Lensing Surveys

When light from a distant galaxy passes a large mass, such as a galaxy cluster, the

light is deflected. This phenomenon is known as gravitational lensing (see Fig. 4).

The angle of deflection depends on the mass of the cluster, and the ratios of distances

between the observer, lens and source. While the deflection angle cannot be inferred

directly, such lensing tends to distort the picture of a galaxy, shearing its image by

∼ 2%. When large numbers of galaxies are observed, a bias in nearby galaxies to

6



Figure 4: Diagrammatic overview of weak lensing phenomenon. Figure from Ref.
[16]. Reproduced by permission of authors.

have aligned shapes leads to a statistical picture of the deflection angle. Knowledge of

how the deflection angle behaves leads to a probe of the expansion history from its

dependence on proper distances.

IV Cluster Surveys

The largest structures in the universe are galaxy clusters. It is possible to predict

a mass function dN/(dMdV ) for the abundance of such clusters, particularly with

the aid of N -body simulations. These predictions can be compared to observations

from galaxy surveys. The dependence on dark energy can be extracted from the

comoving volume element, which depends on the scale factor, which thus traces the

cosmological history. A further dependence on the expansion rate comes from the way

the mass function depends on the growth of perturbations, which is in turn sensitive

to the Hubble factor. Comparisons to the size of perturbations in the CMB allow this

dependency to be accounted for in predicting the expected mass function.

V Current Constraints on Dark Energy

The most current constraints on dark energy come from the WiggleZ survey [17]. For

the equation of state parameter w = P/ρ for dark energy, they find w = −1.03± 0.08,

7



18 Blake et al.

Figure 17. The joint probability for parameters Ωk and w fitted
to various combinations of WMAP, BAO and SNe distance data,
marginalized over Ωm and Ωmh2. The two contour levels in each
case enclose regions containing 68.27% and 95.45% of the total
likelihood.

Figure 18. The joint probability for parameters w0 and wa de-
scribing an evolving equation-of-state for dark energy, fitted to
various combinations of WMAP, BAO and SNe distance data,
marginalized over Ωm and Ωmh2 and assuming Ωk = 0. The two
contour levels in each case enclose regions containing 68.27% and
95.45% of the total likelihood.

the parameters for the various models, for the fits using all
three datasets, are listed in Table 4.

8 CONCLUSIONS

We summarize the results of our study as follows:

• The final dataset of the WiggleZ Dark Energy Survey
allows the imprint of the baryon acoustic peak to be detected
in the galaxy correlation function for independent redshift
slices of width ∆z = 0.4. A simple quasi-linear acoustic peak
model provides a good fit to the correlation functions over
a range of separations 10 < s < 180 h−1 Mpc. The result-
ing distance-scale measurements are determined by both the
acoustic peak position and the overall shape of the clus-
tering pattern, such that the whole correlation function is

being used as a standard ruler. As such, the acoustic param-
eter A(z) introduced by Eisenstein et al. (2005) represents
the most appropriate distilled parameter for quantifying the
WiggleZ BAO measurements, and we present in Table 2 a
3×3 covariance matrix describing the determination of A(z)
from WiggleZ data at the three redshifts z = 0.44, 0.6 and
0.73. We test for systematics in this measurement by vary-
ing the fitting range and implementation of the quasi-linear
model, and also by repeating our fits for a dark matter halo
subset of the Gigaparsec WiggleZ simulation. In no case do
we find evidence for significant systematic error.

• We present a new measurement of the baryon acoustic
feature in the correlation function of the Sloan Digital Sky
Survey Luminous Red Galaxy (SDSS-LRG) sample, finding
that the feature is detected within a subset spanning the
redshift range 0.16 < z < 0.44 with a statistical significance
of 3.4-σ. We derive a measurement of the distilled parameter
dz=0.314 = 0.1239 ± 0.0033 that is consistent with previous
analyses of the LRG power spectrum.

• We combine the galaxy correlation functions measured
from the WiggleZ, 6-degree Field Galaxy Survey and SDSS-
LRG samples. Each of these datasets shows independent ev-
idence for the baryon acoustic peak, and the combined cor-
relation function contains a BAO detection with a statistical
significance of 4.9-σ relative to a zero-baryon model with no
peak.

• We fit cosmological models to the combined 6dFGS,
SDSS and WiggleZ BAO dataset, now comprising six
distance-redshift data points, and compare the results to
similar fits to the latest compilation of supernovae (SNe)
and Cosmic Microwave Background (CMB) data. The BAO
and SNe datasets produce consistent measurements of the
equation-of-state w of dark energy, when separately com-
bined with the CMB, providing a powerful check for sys-
tematic errors in either of these distance probes. Combining
all datasets, we determine w = −1.034±0.080 for a flat Uni-
verse, and Ωk = −0.0040±0.0062 for a curved, cosmological-
constant Universe.

• Adding extra degrees of freedom always produces best-
fitting parameters consistent with a cosmological constant
dark-energy model within a spatially-flat Universe. Vary-
ing both curvature and w, we find marginalized errors
w = −1.063 ± 0.094 and Ωk = −0.0061 ± 0.0070. For a
dark-energy model evolving with scale factor a such that
w(a) = w0 + (1− a)wa, we find that w0 = −1.09± 0.17 and
wa = 0.19 ± 0.69.

In conclusion, we have presented and analyzed the most
comprehensive baryon acoustic oscillation dataset assembled
to date. Results from the WiggleZ Dark Energy Survey have
allowed us to extend this dataset up to redshift z = 0.73,
thereby spanning the whole redshift range for which dark en-
ergy is hypothesized to govern the cosmic expansion history.
By fitting cosmological models to this dataset we have es-
tablished that a flat ΛCDM cosmological model continues to
provide a good and self-consistent description of CMB, BAO
and SNe data. In particular, the BAO and SNe yield con-
sistent measurements of the distance-redshift relation across
the common redshift interval probed. Our results serve as a
baseline for the analysis of future CMB datasets provided
by the Planck satellite (Ade et al. 2011) and BAO mea-

Figure 5: Current constraints on the equation of state of dynamical dark energy,
using the parametrization given in Eq. 1.2.1. Figure rom Ref. [17].
Reproduced by permission of John Wiley and Sons.

consistent with a cosmological constant (wΛ = −1). Allowing for an equation of state

that varies with redshift as2

w(a) = w0 + (1− a)wa, (1.2.1)

they find w0 = −1.09± 0.17 and wa = 0.19± 0.69, also consistent with a cosmological

constant. Their fitting curves are shown in Fig. 5.

1.3 Theory Space

Since the discovery of the accelerated expansion of the universe, a large number of

models have been proposed to give rise to this phenomenon.

The simplest model is a cosmological constant, with an energy density ρ ∼

(10−3 eV)4. While all current data is satisfied by a cosmological constant, the value

it appears to take is in gross conflict with theoretical estimates. Assuming that the

2Note that redshift z is related to the scale factor by 1 + z = 1/a.
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cosmological constant is the vacuum energy density of spacetime, this corresponds to

ρ ∼ m4
P , 120 orders of magnitude away from its measured value. This is known as the

“cosmological constant problem”.

A number of other models have been proposed, which typically attempt to avoid

the cosmological constant problem by assuming that the vacuum energy of spacetime

doesn’t gravitate (i.e., Λ = 0), and searching for a dynamical field to emulate the

desired behavior.

The next simplest model, dubbed “quintessence”, involves a minimally coupled

scalar field rolling in a potential. The present energy density of the universe is then

dominated by energy stored in the scalar field potential. It can be shown that such a

model can yield any desired cosmological evolution through fine-tuning the quintessence

potential. Various quintessence potentials have been shown to be attractor solutions,

so that models can be relatively agnostic with regards to the initial conditions in the

universe. Quintessence models suffer from two major problems. Firstly, it is often

difficult to protect the quintessence potential from quantum loop corrections. To be

effective, the quintessence mass must be on the order of the Hubble scale (∼ 10−33

eV), which is difficult to protect without invoking a broken symmetry, such as for

pseudo-Nambu-Goldstone bosons (pNGBs). Secondly, the light mass of quintessence

fields mean that any coupling to standard model fields will give rise to a long range

force, which has not been observed in nature.

A variation on quintessence called k-essence [18, 19] is based on using functions of

(∇φ)2 in the action to generate the desired energy density based on kinetic energy

rather than potential energy.

Further afield, modifications to gravity such as extra dimensions, Ghost Condensates

[20], DGP gravity [5], and f(R) gravity, to name but a few, have been proposed over

the past decade. See Refs. [21, 22, 23, 24, 25, 26, 27] for detailed reviews of these and
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other models.

While many models of dark energy have been shown to produce an acceptable

cosmological history, the greatest discriminating factor for such models will come from

understanding the perturbative behavior of the model. For this reason, it is of great

interest to construct a generic manner in which dark energy models may be tested

against observations. We begin to address this question in Chapter 4, and discuss

future work in Chapter 5.

1.4 Other Issues in Theoretical Physics

There are a number of other issues in theoretical physics which motivate the exploration

of modified gravity models.

It turns out that constructing a consistent modification to gravity is surprisingly

difficult. In the low-energy limit, a theorem due to Weinberg [28] requires that the

behavior of massless spin-two fields is that of general relativity, which entails that

any modification is equivalent to the introduction of new fields. For such fields to be

observationally consistent often requires that they are either too weakly-coupled or

too massive to mimic dark energy. A few exceptions exist (e.g. Galileon [29, 30, 31],

but are plagued with issues such as superluminal propagation.

Circumventing Weinberg’s theorem by looking at massive gravity has historically

suffered from the infamous vDVZ discontinuity [32, 33] and the Boulware-Deser ghost

[34], although recent attempts at constructing a consistent bimetric massive gravity

theory have been able to overcome this issue [35]. However, they in turn suffer from

arbitrariness of the background metric.

On the high-energy side, it is universally accepted that gravity must become

modified at energies approaching the Planck scale, as näıve scattering amplitudes
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diverge. However, there are numerous difficulties involved in constructing a consistent

theory of quantum gravity. The current leading candidate is string theory, although

there is a long way to go to connect the ideas of string theory to our present universe.

Related to the high energy scale is the hierarchy problem of particle physics. In

a quantum field theory, the mass of a scalar field is not protected by a symmetry,

and typically receives loop corrections, driving it up to the cutoff scale of the theory.

Given a cutoff scale of the Planck mass, it is an unsolved question as to why the

recently-discovered Higgs boson [36, 37] has a mass ∼ 125 GeV. The presently favoured

mechanism for doing so is supersymmetry at a TeV scale. However, it is possible

that the four-dimensional gravitational constant is only an effective scale derived from

some more fundamental scale, such as in the RS-I model [6]. The issue of scalar field

masses particularly plagues quintessence models, which require a mass to be protected

at around the present-day Hubble scale (10−33 eV).

The final issue we discuss is that of dark matter. One possibility for the weakness

of the interaction strength between normal matter and dark matter comes from the

idea of sequestration, or physically removing the standard model and dark matter

fields. This idea has been of particular interest in braneworld models.

Along with dark energy, these issues provide a number of reasons to investigate

various modifications to gravity.

1.5 Structure of this Dissertation

This dissertation is a combination of two separate investigations. The first looks at a

class of braneworld models, with interest in fields that may give rise to dark energy-like

behavior. The second investigates a broad class of dark energy models, using the tools

of effective field theory to construct a generic model of dark energy that can describe
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a large amount of theory-space.

In Chapter 2, we introduce the idea of extra-dimensional models of the universe.

We begin by reviewing the historical evolution of ideas in this field, and describe

the significant results. One of the most important aspects of a model involving

extra dimensions is the manner in which those extra dimensions are hidden from us.

The mechanism used to do so will inevitably leave an imprint on the resulting four-

dimensional universe that we observe, and it is thus of great interest to understand the

four-dimensional universe that one would expect to observe, given a model involving

extra dimensions. This chapter focuses on extensions to the Randall-Sundrum (RS)

braneworld models, and the task of calculating an effective four-dimensional description

for them. A computational method is proposed and described in detail through the

implementation of the method for an uncompactified N -brane model in five dimensions.

Chapter 3 builds upon the results of the previous chapter. Having derived a four-

dimensional effective description for a class of braneworld models, it is of interest to

understand the physics of those models. We begin by investigating the conditions under

which no ghosts appear in the theory, and focus our attention on the subclass of theories

that satisfy this condition. We then investigate gravitational interactions between

different branes, and identify the behavior of the Parameterized Post-Newtonian

(PPN) γ parameter. Next, we look at the possibility of using the discussed models

to sequester dark matter on a separate physical brane from standard model fields, in

order to give a physical reason for the weak interaction strength between standard

model and dark matter fields. Unfortunately, the models we investigated did not give

rise to dark energy behavior, and we discuss this in conclusion.

We then turn to a very different approach. Rather than investigating specific models

or classes of models, we develop an inclusive approach to investigating dark energy

models in Chapter 4, where we employ an effective field theory approach to quintessence.
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Such an approach is of particular interest in putting observational constraints on

possible terms in the lagrangian for dynamical dark energy. An appropriate expansion

method is identified, and the operators in the action are written down. Next, a

number of field redefinitions are employed to simplify the action. We then investigate

a possible UV motivation for the resulting theory using a pseudo-Nambu-Goldstone

boson construction. This construction allows us to determine the scaling of each of

the operators in our effective action, and also to identify the regime of validity of the

description.

In Chapter 5, we conclude by describing the overlap between these two approaches.

We demonstrate the “middle ground” in which our four-dimensional effective descrip-

tion of a braneworld model is described in the more general approach of an effective

field theory construction. We discuss possibilities for future theoretical work, and

briefly describe upcoming experiments and the scientific impact that these experiments

are expected to have on the field of dark energy.

A number of appendices are included. Appendix A describes the exact five-

dimensional equations of motion for the braneworld models of Chapter 2, which

are used to motivate the approximation scheme. Appendix B briefly outlines the

application of our method for finding the four-dimensional effective description to

orbifolded models. Appendix C describes the Kaluza-Klein (KK) modes of our

braneworld models, complementing the analysis included in Chapter 3.

One of the requirements we impose on our effective field theory of dark energy

is that it must maintain the weak equivalence principle (WEP). In Appendix D, we

describe various aspects of the WEP, and show how it is obeyed within the regime of

validity of our analysis. The reduction of order technique used in our EFT is described

in detail in Appendix E. The work described in Chapter 4 builds on previous work;

Appendix F provides a comparison between this and the work presented here. The
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full equations of motion for our effective theory are presented in Appendix G. Finally,

we provide details on how the scaling of operators in the EFT is derived from the

pNGB perspective in Appendix H.
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The idea of extra-dimensional models of the universe dates back to at least Kaluza

and Klein in the 1920’s [38, 39]. Due to issues with the basic model presented there,

the idea was largely ignored until its revival with string theory, which depending

upon the field content, requires anywhere from 10 to 26 dimensions. In the late

1990’s, motivated by ideas from string theory, the notion of constraining matter fields

to a membrane (“brane”) in a higher-dimensional spacetime was used to resurrect

the ideas of Kaluza and Klein. This led to a series of models designed to address a

variety of theoretical issues, in particular, the hierarchy problem, the cosmological
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constant problem, and dark matter. Braneworld models have become a very active

field of research with many papers investigating extensions to the basic ideas (see, e.g.,

[40, 41, 42] and citations therein).

In this chapter, we develop a method to acquire a low-energy effective description of

a five-dimensional braneworld model which contains an arbitrary (but finite) number

of branes. Our goal is to devise a simple method that yields a four-dimensional action

which captures the leading-order effects of braneworld models. This chapter is based

on work presented in [1].

2.1 Braneworld Models

We begin with a brief overview of the features of significant extra-dimensional models

which are relevant to this work.

I Kaluza-Klein Model

The first important extra-dimensional model is that of Kaluza and Klein [38, 39],

dating back to the 1920s. They had noticed that if a five-dimensional metric ansatz is

decomposed into a four-dimensional metric, a four-vector, and a scalar, one recovers a

four-dimensional Ricci scalar, and a Maxwell-like term for the four-vector. Based on

this observation, they proposed a mechanism to unify electromagnetism with gravity

based on a fifth dimension.

The first step in any extra-dimensional model is to hide the fifth dimension from

current observations. They proposed doing so by having the fifth dimension curled

up on itself so tightly that it is effectively invisible at low energies. To do so, they

introduced a circular compactification with periodic boundary conditions, and proposed

the radius L of this circle to be sufficiently small.
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Assuming the extra dimension is flat, one can then decompose a field into Fourier

modes over the extra dimension. We demonstrate with a massive scalar field. Call the

dimensions xa and y. The scalar field then obeys a wave equation

�(5)φ = m2φ. (2.1.1)

Identifying y ⇔ y + 2πnL, n ∈ Z, we can then decompose the field into a fourier

expansion over the fifth dimension,

φ(xa, y) =
∑
n

eiyn/Lφn(xa). (2.1.2)

Looking at an individual mode φn, we find from the scalar equation of motion

�(4)φn(xa) =

(
m2 +

n2

L2

)
φn(xa). (2.1.3)

These mode functions φn(xa) are called “Kaluza-Klein” (KK) modes, formed from

a decomposition of the field over the extra dimension, and collectively form the

“Kaluza-Klein tower”. The four dimensional modes have a modified mass, given by

m2
n = m2 +

n2

L2
. (2.1.4)

The spacing of these modes is characteristic of compactification over a flat extra

dimension.

The idea of Kaluza and Klein suffered from a number of drawbacks. Firstly, it

proposed the existence of a Kaluza-Klein tower of modes for each known particle, such

as the electron, and nobody had ever observed a “heavy” electron. Secondly, it is

difficult to include fermions in such a model, because of the different types of fermions

which exist in different dimensions. Thirdly, the scalar mode, now called the “radion”

mode, which governs the size of the extra dimension, needs be fixed in some manner.

Näıve estimates for the size of the extra dimension suggest L ∼ m−1
P . Finally, the

strength with which the electromagnetic field couples to matter was the same as the
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gravitational coupling, in stark contrast to experiment. The inability to change this

final problem led to the idea being dropped for seventy years.

Nevertheless, the Kaluza-Klein model remains an important model, as it introduces

the basic ideas of compactification, Kaluza-Klein modes, radion modes and the need

for radion stabilization, which are all important in recent investigations of extra-

dimensional models.

II ADD Model

In 1998, Arkani-Hamed, Dvali and Dimopoulos resurrected the Kaluza-Klein model,

by borrowing the idea of a brane from string theory. They suggested that if standard

model fields were constrained to live on a brane in some number of extra dimensions,

then only gravity would develop Kaluza-Klein modes. Estimates for the effect of the

gravitational coupling of such modes suggested that extra dimensions as large as one

millimetre might be feasible. This model became known as the ADD model [4, 43].

The important aspect of the ADD model is that four-dimensional observers ex-

perience an effective Planck scale that is derived from a more fundamental, higher-

dimensional gravitational scale, based on the size of the extra dimensions. For simple

estimates, the effective Planck scale is given by

m2
P ∼M2+n

? V(n) (2.1.5)

where mP is the four-dimensional Planck mass, M? is the fundamental gravitational

scale, n is the number of extra dimensions, and V(n) is the volume of the extra

dimensions. This implies that it may be possible to significantly alleviate the hierarchy

problem of particle physics through the use of extra-dimensional models.

One of the more exciting predictions from this model is that a reduced fundamental

gravitational scale would make the production of black holes in collider experiments
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possible upon reaching energies ∼M?. This in turn led to fears that the LHC would

produce a black hole that would destroy the world.

III Randall-Sundrum Model

Following the ADD model, Randall and Sundrum proposed that it is possible to give

rise to the desired hierarchy without small compactification of the extra dimension, by

using warping in the extra dimension from a bulk cosmological constant. Using two

branes at the fixed points of an orbifold with a negative bulk cosmological constant

was shown to provide exponential enhancement of the effective Planck scale on the

brane with the smaller warp factor (called the TeV brane). Furthermore, hints that

four-dimensional gravity was shown to be recovered on the brane were shown, and

the KK modes were shown to be sufficiently weakly coupled that they did not change

the 1/r2 force law within the regime in which gravity has been experimentally tested.

This model is known as the Randall-Sundrum model, or RS-I [6].

A second model, involving only one brane in an infinite five-dimensional anti de-

Sitter (AdS) bulk, was shown to be able to do away with compactification entirely,

relying on the curvature of AdS space to confine gravity to the brane. While this

model did not give rise to a useful hierarchy, it did demonstrate a mechanism for

infinite extra dimensions. This model is known as the RS-II model [7].

Building on the success of the Randall-Sundrum model, many papers have consid-

ered various extensions to it, including bulk fields [44], radion stabilization mechanisms

[45, 46], and models including more than one or two branes [47, 48, 49, 50, 51, 52]. A

wealth of knowledge of the phenomenology of these models has been accumulated (see

[40, 41, 42, 53, 54] and citations therein, for example).
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2.2 Previous Work

Having discussed historical developments in this field, we now move on to detail

previous work pertinent to the results that will be presented here.

I Four-Dimensional Effective Descriptions

Several different approximation and computational methods have been used to extract

physical predictions from extra-dimensional models. In particular, many models have

an effective four-dimensional regime at low energies, where the radius of curvature

of spacetime measured by four-dimensional observers is much larger than a certain

microphysical lengthscale. We review some of the computational methods that have

been used to obtain a four-dimensional description of five-dimensional braneworld

models, in order to place our results in context.

One method is to linearize the higher dimensional equations of motion about

simple background solutions, then specialize to the long-lengthscale limit in order to

obtain the linearized four-dimensional effective theory (which roughly corresponds to

discarding the Kaluza-Klein modes). This method was used by Garriga and Tanaka

[55] in their analysis of the RS-I model [6], who showed that linearized Einstein gravity

is recovered on one of the branes in a particular regime. Further analyses to quadratic

order and analyses on other backgrounds have also been performed; see, for example,

Refs. [56, 57, 58, 59]. Linearized analyses have many advantages: they are quick and

simple, and serve to identify all of the dynamical degrees of freedom in the theory,

particularly the Kaluza-Klein modes. However, the linearized method is inherently

limited and cannot describe strong field phenomena such as cosmology and black

holes.

A second method is to project the five-dimensional equations of motion onto a brane;
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see, for example, Ref. [60]. This “covariant curvature” formalism fully incorporates

the nonlinearities of the theory. However, the projected description includes nonlocal

terms, and the truncation to a low-energy effective theory is nontrivial, except in cases

with high degrees of symmetry.

In order to overcome some of these shortcomings, Kanno and Soda [61, 62, 63]

suggested a perturbation expansion of the covariant curvature formalism known as the

“gradient expansion method”, which involves expanding the theory in powers of the ratio

between a microphysical scale and the four-dimensional curvature lengthscale. This

approach allows a low-energy description of the model to be found, while retaining

the nonlinearities of the theory. This method has been particularly successful in

investigating the cosmology of braneworld models [61, 63, 47, 64] and has the benefit

of providing an explicit calculation of the five-dimensional metric, but is algebraically

complex and requires assumptions on the form of the metric.

An alternative approach to obtaining a four-dimensional effective action, discussed

by Wiseman [65], focusses on the radion mode of the RS-I model. Treating the radion

mode as a deflection of the branes, the approach uses a derivative expansion to calculate

its nonlinear behavior. Although this method nicely captures the nonlinearities of the

theory, it is highly nontrivial, and guesses the four-dimensional effective action, based

on the first-order equations of motion the method finds.

A final method involves making an ansatz for the form of the five-dimensional

metric in terms of four-dimensional fields and integrating over the fifth dimension to

obtain a four-dimensional action. Examples of this method in the literature include

Refs. [64, 66, 46, 48, 67]. The benefits of this method are the automatic truncation of

the massive Kaluza-Klein modes, and the computational efficiency in dealing strictly

at the level of the action. The main drawback is that the five-dimensional metric

ansatz must usually be found (or guessed) using another method.
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II Extensions to Multiple Branes

One common extension of the RS models is to consider models with more than one

or two branes. A variety of papers have considered three-brane models, usually on

an orbifold (see, e.g., [47, 48, 49, 50, 51]). Some special cases have been considered

for arbitrary N -brane models, mostly to investigate their cosmological properties

[50, 52]. A few papers comment that their methods should extend to arbitrary N -

brane situations (e.g., [68]), but little analysis has actually been performed in this

regard.

Four-dimensional effective descriptions typically contain moduli fields (radion

modes) which describe the distances between branes. Often, such modes appear as

massless scalar fields which couple to gravity in a Brans-Dicke like manner (see, e.g.,

Ref. [66]). This occurs in the RS-I model of two branes in a compactified bulk with

orbifold symmetry, for example. In this model, the radion mode must be stabilized by

some mechanism (for example, by using a bulk scalar field as in the Goldberger-Wise

mechanism [45]), or else the theory is ruled out for observers on the TeV brane (see,

e.g., Refs. [55, 69]). In theories including multiple branes, one expects several radion

modes which may have nontrivial couplings to one another and to the four-dimensional

metric at the nonlinear level.

2.3 Construction of the Model

In this chapter, we present a new method to obtain a four-dimensional effective theory

from an N -brane model in five dimensions. We assume that matter is confined to

branes with the only bulk field being gravity, and we do not invoke mechanisms to

stabilize the radion modes. The method utilizes a two-lengthscale expansion to find

solutions to the five-dimensional equations of motion in a low-energy regime. We do
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not require assumptions about the form of the metric, or the existence of Gaussian

normal coordinates. The method is computationally efficient and does not require the

explicit use of the five-dimensional Einstein equations or the Israel junction conditions.

Instead, one always works at the level of the action. Furthermore, our method is

very general and can be applied to various models. The method has similarities to

the gradient expansion method (see especially [67]), but is computationally much

simpler, and can deal with multiple branes in a straightforward manner. A particular

strength of the method is that it performs a rigorous treatment of all radion modes,

and automatically truncates massive modes. We present a brief example of the method

for the case of the RS-I model [6], before illustrating the method in detail for the

case of N four-dimensional branes in an uncompactified extra dimension, deriving the

four-dimensional effective action for a general configuration.

I Applicable Models

We begin by defining the model we use to illustrate our method, and introduce the

parameters, metrics, and coordinate systems used to describe it. The most basic

model assumes that the extra dimension is infinite and not compactified, but the

generalization to circularly compactified and orbifolded systems is straightforward,

and is described briefly in Section 2.4 and in more detail in Appendix B.

We consider a system of N four-dimensional branes in a five-dimensional universe

with one temporal dimension, with coordinates xΓ = (x0, . . . , x4). We denote the

bulk metric by gΓΣ(xΘ) and the associated five-dimensional Ricci scalar by R(5). For

simplicity, we assume that there are no physical singularities in the spacetime.

The N branes are labeled by an index n = 0, 1, . . . , N − 1, so that adjacent

branes are labeled by successive values of n. We assume that the branes are nonin-

tersecting. Denote the nth brane by Bn. On Bn, we introduce a coordinate system
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wan = (w0
n, . . . , w

3
n). The location of the branes in the five-dimensional spacetime is

described by N embedding functions xn Γ(wan). From these embedding functions, we

can calculate the induced metric hn ab on Bn,

hn ab(w
c
n) =

∂ xn Γ

∂wan

∂ xn Σ

∂wbn
gΓΣ

[
xn Θ
]∣∣∣∣
wc

n

. (2.3.1)

We associate a nonzero brane tension σn with each brane Bn, and we also take there to

be matter fields φn (wan) which live on Bn, with their own matter action Sn m[ hn ab, φ
n ].

In between each brane there exists a bulk region of spacetime, which we denote

R0, . . . ,RN , with Rn lying between branes n− 1 and n. The first (last) bulk region

describes the region between the first (last) brane and spatial infinity in the bulk. In

each bulk region Rn we allow for a bulk cosmological constant Λn (see Ref. [52] for a

possible microphysical origin for such piecewise constant cosmological constants).

Finally, the action for the model is

S
[
gΓΣ, x

n Γ, φn
]

=

∫
d5x
√
−g
(
R(5)

2κ2
5

− Λ(xΓ)

)
−

N−1∑
n=0

σn

∫
Bn
d4wn

√
− hn

+
N−1∑
n=0

Sn m[ hn ab, φ
n ], (2.3.2)

where κ2
5 is the five-dimensional Newton’s constant, and Λ(xΓ) takes the value Λn in

Rn.

II Overview of the Method and Results

Our method works in five steps.

Step 1: Gauge specialize. From the general action (Eq. (2.3.2) in the model

we discuss here), we perform a gauge transformation to specialize the metric to the

straight gauge [58], illustrated in Fig. 6.

Step 2: Separate lengthscales in the action. There are two characteristic

lengthscales in the model. The first, which we call the microphysical lengthscale, is
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a. b.

g ΓΣ

... ...

g αβ
0 g αβ

1 g αβ
2 g αβ

3 g αβ
4

Λ

σ0 σ1 σ2 σ3

0 Λ1 Λ2 Λ3 Λ4Λ

σ0 σ1 σ2 σ3

0 Λ1 Λ2 Λ3 Λ4

Figure 6: An illustration of the model a) before and b) after gauge fixing. The bulk
cosmological constants, brane tensions, and metrics are labeled.

the lengthscale associated with the bulk cosmological constants, which is typically

assumed to be on the order of the micron scale or smaller. The second lengthscale is

the four-dimensional radius of curvature felt on the branes. When the ratio of the

microphysical lengthscale to the four-dimensional radius of curvature is small (the

low-energy limit), the dynamics of the extra dimension effectively decouples from

the four-dimensional dynamics, leading to a four-dimensional effective theory. We

introduce a small parameter to tune this ratio, and use this parameter to perform a

two-lengthscale expansion of the action.

Step 3: Solve equations of motion. The equations of motion at zeroth-order

in this small parameter are calculated and explicitly solved. As expected in this

type of model, all of the bulk cosmological constants must be negative, and at this

order, the brane tensions are required to be tuned to a specific value1 [6] in order to

avoid an effective cosmological constant on the branes. The solution to the zeroth-

order equations of motion provides a background metric solution, which is perturbed

at the next order in our small parameter (the metric is an exact solution if the

four-dimensional space is flat).

Step 4: Integrate five-dimensional dynamics. The five-dimensional dynamics

of the theory are integrated out by substituting the metric into the action, and

1We consider small deviations from this value in Section 2.10.II.
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integrating over the extra dimension. The action to zeroth order in the small parameter

is minimized by the ansatz, leaving only the four-dimensional terms in the action.

Step 5: Redefine fields. The final step is to redefine fields in order to cast the

four-dimensional effective action in the form of a four-dimensional multiscalar-tensor

theory in a nonlinear sigma model. In the Einstein conformal frame, the general form

of the four-dimensional effective action is given by

S[gab,Φ
A, φn ] =

∫
d4x
√
−g
{

1

2κ2
4

R[gab]−
1

2
gabγAB

(
ΦC
)
∇aΦ

A∇bΦ
B

}
+

N−1∑
n=0

Sn m

[
e2αn(ΦC)gab, φ

n
]

(2.3.3)

where ΦA, 1 ≤ A ≤ N − 1, are massless scalar fields (radion modes), which encode

the interbrane distances. Also, κ2
4 (= 8πGN ) is the effective four-dimensional Newton’s

constant, which is a function of κ2
5 and the bulk cosmological constants. Finally,

γAB(ΦC) is the field space metric of the nonlinear sigma model, and αn(ΦC) are the

brane coupling functions. The functional form of both of these depends on the specifics

of the model.

One of the features of the method used here is that five-dimensional gravitational

perturbations, which give rise to massive four-dimensional fields, are automatically

truncated. The mass scales of these fields are typically of order ~/L, where L is the

microphysical lengthscale of the theory. However, Damour and Kogan [49, 50, 68] have

shown that it is possible to have graviton Kaluza-Klein modes where masses are of

order ~/L exp(−l/L), where l is an interbrane separation. Because of the exponential

factor, these second graviton modes can be ultralight and observationally relevant.

Although the models we consider are likely to contain such ultralight graviton modes,

our method excludes their possible contributions to a four-dimensional effective theory.

Our method has similarities to the gradient expansion method of Kanno and Soda

[61, 62, 63]. Our small expansion parameter coincides with theirs, and the zeroth-

26



order solutions from both methods agree in cases where both methods are applicable.

However, beyond this point, the methods diverge. Our method Taylor expands

the action, but not the metric as in the covariant curvature formalism. Although

higher-order corrections to the metric do exist, they are intrinsically five-dimensional

interactions that are unnecessary for the construction of a four-dimensional effective

theory; their contributions to the effective theory are exponentially suppressed within

the low-energy regime. Furthermore, our method arrives at a four-dimensional effective

action, rather than working only at the level of the equations of motion. This provides

for computational efficiency and a more intuitive understanding of the final result.

2.4 Application to the Randall Sundrum Model

To briefly illustrate an application of our method, we apply it to the well-known case

of the Randall Sundrum (RS-I) model with a general background. The derivation of

results in this section follows the details on the uncompactified model treated in the

remainder of this chapter closely.

Many papers have used a metric ansatz for the RS-I model (e.g. [6, 66]), guessing at

the form of the five-dimensional metric, and using this to compute the four-dimensional

effective action. Such metrics are typically of the form

ds2 = eχ(xc,y)γab(x
c)dxadxb +

(
χ,y(x

c, y)

2k

)2

dy2 (2.4.1)

where k =
√
−κ2

5Λ/6. Rather than guessing at the form of the five-dimensional metric,

our method derives a five-dimensional metric solution, from which the four-dimensional

action is calculated.

The RS-I model contains two branes on a circular orbifold. We consider the circle

of circumference 2L, with the branes at y = 0 and y = L, with −L < y < L. We let

the y = 0 brane be the Planck brane and the y = L brane be the TeV brane. The
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points y and −y are identified. To write this in the language of regions described

previously, we treat the regions −L < y < 0 and 0 < y < L as two distinct regions,

but identify fields by using φ(−y) = φ(y), where φ is representative of an arbitrary

field.

We now follow the computational steps outlined in Section 2.3.II.

Step 1. Write the action in the straight gauge [58]. In this gauge, the general

metric is given by

ds2 = eχ(xc,y)γab(x
c, y)dxadxb + Φ2(xc, y)dy2 (2.4.2)

where det γ = −1, and we take Φ to be positive. For this model, the general action

(2.3.2) specializes to

S =

∫
d4x

(∫ L−

0+
dy +

∫ 0−

−L+

dy

)
√
−g
(
R(5)

2κ2
5

− Λ

)
− σ0

∫
B0
d4x
√
− h0 − σL

∫
BL
d4x
√
− hL

+
1

κ2
5

∫
B0
d4x
√
− h0

(
K0 + + K0 −)+

1

κ2
5

∫
BL
d4x
√
− hL

(
KL + + KL −)

+ S0 m

[
h0 ab, φ

0
]

+ SL m

[
hL ab, φL

]
. (2.4.3)

The indices 0 and L refer to the Planck and TeV branes, respectively. hab is the

four-dimensional induced metric on a brane, and σ is the brane tension. K+ and K−

are the extrinsic curvature tensors on either side of the branes, and Sm is the matter

action on each brane.

Step 2. Now, expand the action (2.4.3) to lowest order in the two-lengthscale
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expansion detailed in Section 2.6. The action to lowest order in this model is given by

S =

∫
d4x

(∫ L−

0+
dy +

∫ 0−

−L+

dy

)
√
−γ e2χ

2κ2
5Φ

(
−1

4
γabγbc,yγ

cdγda,y − 5 (χ,y)
2

− 4χ,yy +4
Φ,y

Φ
χ,y − 2κ2

5Φ2Λ

)
+

∫
d4x

(∫ L−

0+
dy +

∫ 0−

−L+

dy

)
λ(xa, y)

(√
−γ − 1

)
+

∫
B0
d4x
√
−γe2χ(0)

[
2

κ2
5

(
χ,y
Φ

∣∣∣
y=0−

− χ,y
Φ

∣∣∣
y=0+

)
− σ0

]
+

∫
BL
d4x
√
−γe2χ(L)

[
2

κ2
5

(
χ,y
Φ

∣∣∣
y=L−

− χ,y
Φ

∣∣∣
y=−L+

)
− σL

]
(2.4.4)

Here, χ(0) denotes χ(xa, 0), and similarly for χ(L). The third line in this action

includes a Lagrange multiplier (λ) to enforce the condition det γ = −1.

Step 3. Varying the action (2.4.4) with respect to the three fields χ, γ, and Φ, the

following equations of motion are obtained.

0 =
1

4
γabγbc,yγ

cdγda,y − 3χ2
,y − 2κ2

5Φ2Λ (2.4.5)

γad,yy = γab,yγ
bcγcd,y − γad,y

(
2χ,y −

Φ,y

Φ

)
(2.4.6)

0 =
1

12
γabγbc,yγ

cdγda,y + χ2
,y + χ,yy −

Φ,y

Φ
χ,y +

2

3
κ2

5Φ2Λ (2.4.7)

The following boundary conditions at the branes are also obtained.

γab,y(y = 0, L) = 0 (2.4.8)

χ,y(y = 0+) = − 1

3
κ2

5σ0Φ (2.4.9)

χ,y(y = L−) =
1

3
κ2

5σLΦ (2.4.10)

We now solve the equations of motion. The solution to (2.4.6) is given by (in

matrix notation)

γ(xa, y) = A(xa) exp

(
B(xa)

∫ y

0

Φ(xa, y′)e−2χ(xa,y′)dy′
)

(2.4.11)
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where A and B are arbitrary 4×4 real matrix functions of xa, subject to the constraint

that γ is a metric. This can be combined with (2.4.8) to yield B = 0, and so γ is a

function of xa only. The only remaining equation of motion is then χ2
,y = −2κ2

5Φ2Λ/3.

Defining k =
√
−κ2

5Λ/6, this gives χ,y = ±2kΦ. Choose the negative solution, so that

the brane at y = 0 corresponds to the Planck brane. The other boundary conditions

(2.4.9) and (2.4.10) yield

σ0 =
6k

κ2
5

and σL = −6k

κ2
5

(2.4.12)

which are the well-known brane-tuning conditions. Combining these solutions, the

metric solution is then

ds2 = eχ(xc,y)γab(x
c)dxadxb +

(
−χ,y(x

c, y)

2k

)2

dy2. (2.4.13)

Step 4. We now have the zeroth-order metric solution, which has solved the

five-dimensional dynamics. The next step is to use this metric in the original action

and integrate over the fifth dimension (c.f. [66]). The zeroth-order part of the action

integrates to exactly zero, while the remainder of the action (the original second-order

terms) yields the following four-dimensional effective action.

S =

∫
d4x

√
−γ

2kκ2
5

[(
1− eχ(L)

)
R(4) − 3

2
eχ(L)(∇aχ(L))(∇aχ(L))

]
+ S0 m

[
γab, φ

0
]

+ SL m

[
eχ(L)γab, φL

]
(2.4.14)

The constraint det γ = −1 has been relaxed, instead choosing χ(0) = 0.

Step 5. Transforming to the Einstein frame, let gab =
(
1− eχ(L)

)
γab, and de-

fine exp(χ(xa, L)/2) = tanh
(
κ4ϕ(xa)/

√
6
)
. Let κ2

4 = kκ2
5 be the four-dimensional

gravitational scale. The action in the Einstein frame is then given by

S =

∫
d4x
√
−g
[
R(4)

2κ2
4

− 1

2
(∇aϕ)(∇aϕ)

]
+ S0 m

[
cosh2

(
κ4ϕ√

6

)
gab, φ

0

]
+ SL m

[
sinh2

(
κ4ϕ√

6

)
gab, φL

]
. (2.4.15)
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This action corresponds to the four-dimensional effective action arrived at by other

means, such as the covariant curvature formalism [62, 66].

For the rest of this chapter, we confine our discussions to uncompactified N -brane

models. In Appendix B, we revisit orbifold models in more detail.

2.5 The Five-Dimensional Action in a Convenient Gauge

We now begin to derive the result (2.3.3), starting from the action (2.3.2). We start by

making coordinate choices to simplify the expression, and separate out contributions

due to discontinuities in the connection across branes. We specialize the coordinate

system to that of the straight gauge [58] and give the action corresponding to (2.3.2)

in this gauge. Again, while the details presented here are specific to an uncompactified

extra dimension, they generalize straightforwardly to the other situations described

previously.

In general, the five-dimensional Ricci scalar can have distributional components

at the branes, as the metric will have a discontinuous first derivative due to the

brane tensions. It is convenient to separate these distributional components from the

continuous parts. It is further convenient to use separate bulk coordinates xΓ
n in each

bulk region Rn, rather than using a single global coordinate system. We will therefore

have a bulk metric in each region Rn, rather than one global metric. We note that

the nth brane will then have two embedding functions: xn Γ
n(wan) in the coordinates xΓ

n

of Rn, and xn Γ
n+1(wan) in the coordinates xΓ

n+1 of Rn+1.
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Combining these modifications, we can write Eq. (2.3.2) as

S
[
gΓΣ, x

n Γ, φn
]

=
N∑
n=0

∫
Rn

d5xn
√
− gn

(
Rn (5)

2κ2
5

− Λn

)

+
N−1∑
n=0

1

κ2
5

∫
Bn
d4wn

√
− hn

(
Kn + + Kn −)

−
N−1∑
n=0

σn

∫
Bn
d4wn

√
− hn +

N−1∑
n=0

Sn m[ hn ab, φ
n ] (2.5.1)

where Kn + is the trace of the extrinsic curvature tensor of the nth brane in the bulk

region Rn+1, and Kn − is the trace of the extrinsic curvature tensor of the nth brane

in the bulk region Rn, where the normals are always defined to be pointing away from

the bulk region and towards the brane [see Eqs. (2.5.13) and (2.5.14) below]. These

terms are just the usual Gibbons-Hawking terms [70].

I Specializing the Coordinate System

We begin by specializing the coordinate systems in each bulk region. Denote the

coordinates by xΓ
n = (xan, yn), where a indicates one temporal and three spatial

dimensions. Without loss of generality, we can choose the coordinates such that the

branes bounding the region are located at fixed yn. Next, choose the yn coordinates

such that the branes are located at yn = n − 1 and yn = n. In other words, in the

brane embedding functions xn Γ
n(wan),

yn−1
n(wan−1) = n− 1, (2.5.2)

yn n(wan) = n. (2.5.3)

In this way, the first brane will be located at y0 = y1 = 0, and the last brane located

at yN−1 = yN = N − 1. The nth bulk region Rn then extends from yn = n − 1 to

yn = n, with the exceptions of the first and last bulk regions, which extend away from

the branes to ∓∞ respectively.
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Next, we use some of the available gauge freedom to remove off-diagonal elements

of the metrics. Carena et al. [58] have shown that it is always possible to find a

coordinate transformation in Rn of the form xan → fan(xbn, yn) to make gn ya = 0 while

simultaneously maintaining that the branes be located at yn = n − 1 and yn = n.

After such a transformation, the metric in Rn can be written as

dsn 2 = γn ab(x
c
n, yn)dxandx

b
n + Φn 2(xcn, yn)dy2

n (2.5.4)

where the sign of gn yy is known from the signature of the metric. We choose the sign

of Φn to be positive.

The brane positions are now hyperplanes located at yn = integer. It is obvious

that only coordinate transformations for which y → g(y) (with no xa dependence)

can preserve this form for the hyperplanes. With this condition, only coordinate

transformations for which xa → fa(xb) will preserve the form of the metric. Thus, the

remaining gauge freedom lies in coordinate transformations of the form xa → fa(xb)

and y → g(y) such that the positions of the branes are preserved.

For later simplicity, we choose the following parameterization of the four-dimensional

metric γn ab. In each bulk region, let

γn ab(x
c
n, yn) = e χn (xcn,yn) γ̂n ab(x

c
n, yn) (2.5.5)

such that the determinant of γ̂n ab is constrained to be −1. The function exp( χn ) is

sometimes called the warp factor. The metric in Rn is then

dsn 2 = e χn (xcn,yn) γ̂n ab(x
c
n, yn)dxandx

b
n + Φn 2(xcn, yn)dy2

n. (2.5.6)

II Embedding Functions, Coordinate Systems on the Branes, and In-

duced Metrics

We now specialize the coordinate system wan on the nth brane Bn. We choose the

coordinate system on B0 to coincide with the first four coordinates of the bulk
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coordinate system of R0, evaluated on the brane. Thus,

x0 Γ
0 (wa0) = ( x0 a

0(wa0), y0 0(wa0)) (2.5.7a)

= (wa0 , 0). (2.5.7b)

Now, transform the coordinates in the second bulk region by transforming xa1 such

that

x0 Γ
1 (wa0) = (wa0 , 0). (2.5.7c)

Such a transformation only requires a mapping of the form xa1 → fa(xb1), and so the

locations of the branes are preserved. Next, choose a coordinate system wa1 on B1 such

that

x1 Γ
1 (wa1) = (wa1 , 1) (2.5.7d)

and continue this process until all branes and bulk regions have related coordinate

systems. The coordinate systems we acquire have the property that for a point P on

Bn, we have

xn Γ
n(P) = xn Γ

n+1(P). (2.5.7e)

Note that while the condition (2.5.7e) implies that the coordinate patches can be

joined continuously from one region to another in a straightforward manner, they

need not form a global coordinate system because they may not join smoothly across

the branes.

From the embedding functions in these coordinate systems we can calculate the

induced metric on the branes, using Eq. (2.3.1). As each brane is adjacent to two

bulk regions, there will be two induced metrics, one from each bulk region. For Bn,

the induced metric from Rn is

hn −ab(w
c
n) = e χn (wc

n,n) γ̂n ab(w
c
n, n) (2.5.8)

while the induced metric from Rn+1 is

hn +
ab(w

c
n) = e χn+1 (wc

n,n) γ̂n+1
ab(w

c
n, n) (2.5.9)
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We will restrict attention to configurations where the two induced metrics coincide

(as would be enforced by the first Israel junction condition [71]). We then have

hn ab(w
c
n) = hn −ab(w

c
n) = hn +

ab(w
c
n) (2.5.10a)

hn ab(w
c
n) = e χn (wc

n,n) γ̂n ab(w
c
n, n) = e χn+1 (wc

n,n) γ̂n+1
ab(w

c
n, n). (2.5.10b)

Taking the determinant of this expression and using the fact that the determinants of

γ̂ab are constrained to be −1, we find that

χn (wcn, n) = χn+1 (wcn, n). (2.5.11)

Then by Eqs. (2.5.10), it follows that

γ̂n ab(w
c
n, n) = γ̂n+1

ab(w
c
n, n). (2.5.12)

III The Action

Now that we have specialized the coordinate systems for every region and brane in

our model, we can rewrite our action (2.5.1) in terms of these coordinates.

We can evaluate the extrinsic curvature tensor terms as follows. Each brane has two

normal vectors, one each from the two adjacent bulk regions. We define the normal

vectors ~nn ± at Bn to be the inward pointing normals from Rn+1 and Rn. Since the

branes are at fixed values of the coordinates yn, this gives

~nn −(wan) =
1

Φn (wan, n)
∂yn (2.5.13)

as the normal vector from Rn and

~nn +(wan) = − 1

Φn+1 (wan, n)
∂yn+1

(2.5.14)

as the normal vector from Rn+1. The vector ~nn − points to the right of bulk region n

towards brane n, while ~nn + points to the left of region n+ 1 towards brane n, using

the layout illustrated in Fig. 6.
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For the extrinsic curvature tensors, we have by definition

Kn −
ab(w

c
n) =

∂( xn α)

∂wan

∂( xn β)

∂wbn
∇β nn −

α

∣∣∣∣
xcn=wc

n,yn=n

, (2.5.15)

Kn +
ab(w

c
n) =

∂( xn+1 α)

∂wan

∂( xn+1 β)

∂wbn
∇β nn +

α

∣∣∣∣
xcn+1=wc

n,yn+1=n

. (2.5.16)

Evaluating these using the explicit form of the normals, we have

Kn −
ab(w

c
n) =

1

2

1

Φn
(
χn ,ye

χn γ̂n ab + e χn γ̂n ab,y

)
(wcn, n), (2.5.17)

Kn +
ab(w

c
n) = − 1

2

1

Φn+1

(
χn+1
,ye

χn+1

γ̂n+1
ab + e χn+1

γ̂n+1
ab,y

)
(wcn, n). (2.5.18)

To take the trace of the extrinsic curvature tensor, we contract with the inverse induced

metric

hn ab = e− χn γ̂n ab = e− χn+1

γ̂n+1 ab. (2.5.19)

We find

Kn +(wcn) = −
2 χn+1

,y

Φn+1

∣∣∣∣
wc

n,n

, (2.5.20)

Kn −(wcn) =
2 χn ,y

Φn

∣∣∣∣
wc

n,n

. (2.5.21)

In deriving these equations, we used the fact that γ̂n ab γ̂n ab,y = 0, which follows from

det( γ̂n ab) = −1.

From Eq. (2.5.6), the determinant of the five-dimensional metric can be written as

√
− gn = Φn e2 χn

√
− γ̂n . (2.5.22)

We do not substitute
√
− γ̂n = 1 at this stage; instead we choose to enforce this at the

level of the action by a Lagrange multiplier (see Appendix A). Using Eqs. (2.5.20),
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(2.5.21), and (2.5.22), the action (2.5.1) can be written as

S [ γ̂n ab , Φn , χn , φn ] =
N∑
n=0

∫
Rn

d5xn Φn e2 χn
√
− γ̂n

(
Rn (5)

2κ2
5

− Λn

)

+
N−1∑
n=0

2

κ2
5

∫
Bn
d4wne

2 χn (n)
√
− γ̂n

(
χn ,y

Φn

∣∣∣∣
yn=n

−
χn+1
,y

Φn+1

∣∣∣∣
yn+1=n

)

−
N−1∑
n=0

σn

∫
Bn
d4wne

2 χn (n)
√
− γ̂n +

N−1∑
n=0

Sn m[ hn ab, φ
n ]. (2.5.23)

2.6 Separation of Lengthscales

We now describe the approximation method, based on a two-lengthscale expansion,

which we use to obtain a four-dimensional description of the system. We begin by

defining the appropriate lengthscales, and then detail how the theory simplifies in the

regime where the ratio of lengthscales is small.

I Two Lengthscales

There are three groups of parameters in our model: the five-dimensional gravitational

scale κ2
5, the brane tensions {σn}, and the bulk cosmological constants {Λn}. We

assume that all parameters in a group are of the same order of magnitude, and so

will just consider typical parameters σ and Λ. Working with units in which c = 1, the

dimensionality of these parameters in terms of mass units M and length units L are

[κ2
5] = L2/M , [σ] = M/L3, and [Λ] = M/L4.

We assume that the dimensionless combination σ2κ2
5/Λ is approximately of order

unity; this will be enforced by the brane-tuning conditions we derive below [see Eq.

(2.7.17)]. Eliminating κ2
5, we can then define a lengthscale by

L = σ/Λ (2.6.1)
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and a mass scale by

M = σ4/Λ3. (2.6.2)

For a given configuration, we also define a four-dimensional curvature lengthscale

Lc(y) on each slice of constant y, as follows. We take the minimum of the transverse

lengthscale over which the induced metric varies, and the transverse lengthscale over

which the metric coefficient Φ varies. In other words,

Lc(y) ∼ min


∣∣∣R(4)

âb̂ĉd̂

∣∣∣−1/2

,
∣∣∣∇âR

(4)

b̂ĉd̂ê

∣∣∣−1/3

, . . . ,
|Φ|
|∇âΦ|

,
|Φ|1/2∣∣∣∇â∇b̂

Φ
∣∣∣1/2 , . . .

 (2.6.3)

where â, b̂, . . . denotes an orthonormal basis of the induced metric, Râb̂ĉd̂ is the Riemann

tensor of the induced metric, and dots denote similar terms with more derivatives.

Thus, for a given configuration, we have two natural lengthscales: the microphysical

lengthscale L = σ/Λ (the same for all configurations), and the macrophysical curvature

lengthscale Lc (where the c is intended to denote “curvature”).

II Separating the Lengthscales

We now evaluate the action (2.5.23) in the low-energy regime Lc � L, in which the

theory admits a four-dimensional description. We will find that there is a leading

order term of order ∼ ML, and a subleading term of order ∼ ML(L/Lc)2. Our

strategy will be to separate the contributions to the action at each order, minimize the

leading order piece of the action, and then substitute the general solutions obtained

from that minimization into the subleading piece of the action. The result will be

a four-dimensional action that gives the effective description of the system in the

low-energy regime.

We write the action (2.5.23) as a sum S = Sg + Sm of a gravitational part Sg and
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a matter part Sm, where the matter part is the last term in Eq. (2.5.23) and the

gravitational part comprises the remaining terms.

We first discuss the expansion of the gravitational action Sg, which is a functional

of a bulk metric gαβ and brane embedding functions xn Γ. We define a mapping Tε

that acts on these variables

Tε : (gαβ , x
n Γ)→ (gεαβ, x

n Γ
ε ), (2.6.4)

where ε > 0 is a dimensionless parameter, as follows: (i) We specialize to our chosen

gauge, (ii) replace the metric (2.5.6) with the rescaled version

ds2
ε =

1

ε2
eχ(xc,y)γ̂ab(x

c, y)dxadxb + Φ2(xc, y)dy2, (2.6.5)

where indices indicating regions have been suppressed, and (iii) leave the embedding

functions in our chosen gauge unaltered. We may think of ε as a parameter that tunes

the ratio of the microphysical lengthscale to the macrophysical lengthscale. As ε is

decreased, lengthscales on the brane are inflated, and so Lc increases. Thus, as ε

decreases, so does the ratio L/Lc. In particular, we have(
L
Lc

)
ε

= ε
L
Lc
. (2.6.6)

It is important to note that this ε scaling does not map solutions to solutions, but

just provides a means of keeping track of the dependence on the various lengthscales.

We can construct a one-parameter family of action functionals by using these

rescaled metrics in our original action (2.5.23)2:

Sg,ε
[
gαβ, x

n Γ
]
≡ ε4Sg

[
gεαβ, x

n Γ
ε

]
. (2.6.7)

We can expand this action in powers of ε by

Sg,ε
[
gαβ, x

n Γ
]

= Sg,0
[
gαβ
]

+ ε2Sg,2
[
gαβ
]
, (2.6.8)

2The factor of ε4 in Eq. (2.6.7) is for convenience, so that Eq. (2.6.8) contains
terms of O(1) and O(ε2). This is explicitly shown in Section 2.7.
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where on the right hand side we omit the dependence on the embedding functions

since we have used the gauge freedom to fix those. The expansion (2.6.8) truncates

after two terms; there are no higher-order terms in ε. Note that there is no O(ε)

term, as when the action (2.6.7) is evaluated, terms of O(ε2) arise from contractions

in the Ricci scalar using gab (O(1) terms arise from gyy contractions). Terms of order

O(ε) would arise from contractions using gay, but as these components of the metric

have been gauge-fixed to zero, they are not present. This can be seen explicitly in

the expansion of the Ricci scalar (A.3). As we tune ε → 0, we move further into

the low-energy regime, and so we identify the zeroth-order term as the dominant

contribution to the action, and the second-order term as the subleading term. This

provides the separation of lengthscales we desire.

Let us now turn to the matter contribution to the action, Sm. We expect the

matter action to contribute at O(ε2), the same order as the subleading gravitational

term. To see this, note that the brane tensions scales as σ ∼M/L3, where the scales

M and L were defined in Eqs. (2.6.1) and (2.6.2). The matter action will be roughly

Sm ∼
∫
ρ d4x, where ρ is a four-dimensional energy density. The four-dimensional

Newton constant κ2
4 = 8πG is of order κ2

4 ∼ L/M by dimensional analysis [c.f. Eq.

(2.8.14) below], and so ρ will be of order

ρ ∼ 1

κ2
4L2

c

∼ M
LL2

c

. (2.6.9)

Taking the ratio ρ/σ now gives

ρ

σ
∼ M/LL2

c

M/L3
∼ L

2

L2
c

∝ ε2. (2.6.10)

Formally, the scaling (2.6.10) can be achieved by replacing the matter action Sm with

a rescaled action Sm,ε given by (i) multiplying by ε4 as in Eq. (2.6.7), (ii) rescaling

all fields and dimensional constants with dimensions (mass)r(length)s by factors of
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ε−(r+s). The expansion of the full action is then

Sε = Sg,ε + Sm,ε = Sg,0 + ε2 [Sg,2 + Sm]

= S0 + ε2S2. (2.6.11)

It can be seen that given brane tensions tuned to the bulk cosmological constants,

σ2 ∼ Λ/κ2
5, we require that the matter density on a brane should be small, so as not to

spoil the tuning. This also yields ρ� σ, which roughly corresponds to the separation

of lengthscales condition L � Lc.

We perform this ε scaling separately in each bulk region of the model. The

contribution to the action from each region will separate into zeroth- and second-order

terms.

III The Low-Energy Regime

Now that the contributions to each order have been identified, we can minimize the

leading order term in the action, S0 . Once general solutions to the equations of

motion have been found, we can use these solutions in the second-order term in the

action. Thus, we solve for the high-energy (short lengthscale) dynamics first, and use

the solution to this as a background solution for the low-energy (long lengthscale)

dynamics. At this point, we may let ε → 1, and rely on the ratio (L/Lc)2 being

sufficiently small to provide the separation of lengthscales.

The effect of this separation of lengthscales is to enforce a decoupling of the high-

energy dynamics from the low-energy dynamics. We will see below that the equation

of motion for the high-energy dynamics contains y derivatives, but no xa derivatives.

The theory at this order thus reduces to a set of uncoupled theories, one along each

fiber xa = const in the bulk. These theories are coupled together at O(ε2), and thus in

the regime of interest, the coupling is minimal. After solving the high-energy dynamics
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along these fibers, a four-dimensional effective description of the system remains.

The low-energy regime, in which the theory admits a four-dimensional description,

is the regime

Lc � L. (2.6.12)

This regime is also frequently characterized in the literature by the condition

ρ� σ, (2.6.13)

where ρ is the mass density on a brane and σ is a brane tension [c.f. Eq. (2.6.10)

above]. One can interpret the condition (2.6.13) as saying that the mass density on

the brane must be sufficiently small that the brane-tuning conditions [Eq. (2.7.17)

below which enforces σ2 ∼ Λ/κ2
5] are not appreciably modified. However, the condition

(2.6.13) is less general than the condition (2.6.12), and although necessary, is actually

insufficient. First, as discussed above, (2.6.13) only applies to branes, whereas (2.6.12)

applies at each value of y, including away from the branes. Second, even when the

density on a given brane vanishes, four-dimensional gravitational waves on that brane

can give rise to radii of curvature Lc that are comparable to L. In this case, the

separation of lengthscales will not apply and the four-dimensional effective theory

will not be valid, despite the fact that the condition (2.6.13) is satisfied. Curvature

associated with the metric coefficient Φ can also yield similar results.

Finally, we discuss a subtlety in our definition of the “low-energy regime”. As noted

in the previous paragraph, Lc varies with position in the five-dimensional universe.

Our separation of lengthscales will break down when the induced metric on any slice

of constant y has a radius of curvature Lc comparable to that of the microphysical

lengthscale L; it is insufficient to require that Lc � L on each brane. When this

happens, the terms of order ε2 will couple strongly to the O(1) terms, and our

approximate solutions for the five-dimensional metric will no longer be valid. This will
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generically occur at sufficiently large distances from the branes, as exp( χn ) typically

grows exponentially small away from the branes, and L−2
c ∝ exp(− χn )R(4). Despite

this breakdown, the contribution to the action from these regimes is exponentially

suppressed by the warp factor, and thus provides only a small deviation from the

effective theory. It is unlikely that the warp factor can grow without bound after

encountering this regime while maintaining a globally hyperbolic spacetime.

2.7 The Action to Lowest Order

In this section, we calculate and explicitly solve the equations of motion to lowest order

in the two-lengthscale expansion. First, however, we write out the complete, rescaled

action showing explicitly the dependence on ε. Inserting the decomposition (A.3) of

the Ricci scalar and the rescaled metric (2.6.5) into the action (2.5.23) [following the

prescription of Eq. (2.6.7)], we obtain

Sε =
N∑
n=0

∫
Rn

d5xn

[√
− γ̂n

e2 χn

2κ2
5 Φn

(
− 1

4
γ̂n ab γ̂n bc,y γ̂

n cd γ̂n da,y − 5( χn ,y)
2 − 4 χn ,yy

+ 4
Φn ,y

Φn
χn ,y − 2κ2

5 Φn 2Λn

)
+ λn (xa, y)

(√
− γ̂n − 1

)]

+
N−1∑
n=0

∫
Bn
d4wne

2 χn (n)
√
− γ̂n

[
2

κ2
5

(
χn ,y

Φn

∣∣∣∣
yn=n

−
χn+1
,y

Φn+1

∣∣∣∣
yn+1=n

)
− σn

]

+
N∑
n=0

ε2
∫
Rn

d5xn
√
− γ̂n

e χn

2κ2
5

(
Φn Rn (4) − 3 Φn ∇a∇a χ

n − 3

2
Φn (∇a χn )(∇a χ

n )

− 2∇a∇a Φn − 2(∇a χn )(∇a Φn )

)
+

N−1∑
n=0

ε2 Sn m[ hn ab, φ
n ] (2.7.1)

where we include the Lagrange multiplier terms (A.2) discussed in Appendix A, and

the factor of ε2 in front of the matter action comes from the process described in the

previous section (functional dependence of the action on [ γ̂n ab , Φn , χn , φn ] has been

suppressed to save space). This form explains the choice of the ε4 factor in Eq. (2.6.7),

and shows the decomposition into O(1) and O(ε2) terms, as claimed in Eq. (2.6.11).
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From the form of Eq. (2.7.1), we see that we can neglect the last two lines in the

limit ε→ 0. We can obtain a more precise characterization of the domain of validity

of this low-energy approximation by estimating the ratio between the terms dropped

and the terms retained. As an example, consider the first term on the 4th line and the

first term on the first line. Their ratio is (dropping the ‘n’ labels)[
eχΦR(4)

] [e2χ

Φ
γ̂abγ̂bc,yγ̂

cdγ̂da,y

]−1

∼
[
eχΦR(4)

] [ e2χ

Φỹ2

]−1

∼
[
e−χR(4)

] [
Φ2ỹ2

]
(2.7.2)

where ỹ is the coordinate lengthscale over which γ̂ab varies. We recognize the first

factor as essentially the Ricci scalar of the induced metric eχγ̂ab, which is of order

L−2
c . We recognize the second factor as the square of the physical lengthscale in the y

direction over which γ̂ varies, which is always ∼ L2 (see the explicit solution (2.7.20)

below). Thus, the ratio is (L/Lc)2, confirming the identification of the low-energy

regime as L � Lc.

I Varying the Action

In the action (2.7.1) at zeroth-order in ε, we have three fields to vary (in N regions):

Φn (xc, y), χn (xc, y), and γ̂n ab(x
c, y). There is a subtlety in the variation however. The

constraint that det ( γ̂n ab) = −1 must be imposed either at the level of the equations

of motion, or by a Lagrange multiplier. The Lagrange multiplier is explicitly included

in Eq. (2.7.1). Further details are provided in Appendix A.

We begin by varying with respect to Φn . From this variation, we find a single

equation of motion in each region,

1

4
γ̂n ab γ̂n bc,y γ̂

n cd γ̂n da,y − 3 χn 2
,y − 2κ2

5 Φn 2Λn = 0. (2.7.3)

Next, we vary with respect to γ̂n ab. Note that in varying the action, we obtain

boundary terms from neighboring regions from the relationship (2.5.12). The variation
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produces an equation of motion in each bulk region,

γ̂n ad,yy = γ̂n ab,y γ̂n bc γ̂n cd,y − γ̂n ad,y

(
2 χn ,y −

Φn ,y

Φn

)
. (2.7.4)

(If using Lagrange multipliers, this equation results after the Lagrange multiplier

is eliminated by tracing the equation using γ̂n ab and back substituting). Note that

tracing over the indices in Eq. (2.7.4) and using Eq. (A.4) leads to Eq. (A.5) as

expected. We also find a boundary condition to be satisfied at each brane,

1

Φn
γ̂n ab,y(yn = n) =

1

Φn+1
γ̂n+1
ab,y(yn+1 = n). (2.7.5)

Finally, we vary with respect to χn . Here, we once again have boundary terms

arising from integrating bulk terms by parts in neighboring regions. There is an

equation of motion in each bulk region,

1

12
γ̂n ab γ̂n bc,y γ̂

n cd γ̂n da,y + χn 2
,y + χn ,yy −

Φn ,y

Φn
χn ,y +

2

3
κ2

5 Φn 2Λn = 0. (2.7.6)

We also find a boundary condition at each brane,

χn ,y

Φn

∣∣∣∣
yn=n

−
χn+1
,y

Φn+1

∣∣∣∣
yn+1=n

=
2

3
κ2

5σn. (2.7.7)

II Solving the Equations of Motion

We have three equations of motion for each bulk region, as well as numerous boundary

conditions for the fields at the branes [Eqs. (2.5.11), (2.5.12), (2.7.3), (2.7.4), (2.7.5),

(2.7.6), and (2.7.7)]. Note that these equations all describe the dynamics along a fiber

of constant xa which doesn’t couple to any other fibers, and so solving these equations

of motion consists of solving the dynamics of the extra dimension of the model.

We begin by solving Eq. (2.7.4). It is convenient to solve this equation in matrix

notation. Let

[γ̂ab] = γ̂ (2.7.8)
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where we suppress indices n. Then in matrix notation, Eq. (2.7.4) is

¨̂γ = ˙̂γ γ̂−1 ˙̂γ − ˙̂γ

(
2χ,y −

Φ,y

Φ

)
, (2.7.9)

where dots denote derivatives with respect to y. It is straightforward to check that a

solution to this differential equation in region n is

γ̂(xa, y) = A(xa) exp

(
B(xa)

∫ y

n−1

Φ(xa, y′)e−2χ(xa,y′)dy′
)
. (2.7.10)

where A and B are arbitrary 4× 4 real matrix functions of xa. The lower limit on the

integral is chosen so that the boundary conditions may be matched at the previous

brane (obviously, care must be taken in the first region). The expression (2.7.10) has

the correct number of integration constants to satisfy arbitrary boundary conditions.

From our knowledge of γ̂ab, A must be a symmetric matrix with determinant −1. The

exponential has unit determinant, and so B must be traceless. The condition that γ̂

is symmetric implies that BT = A B A−1. The quantity that appears in Eqs. (2.7.3)

and (2.7.6) is

γ̂n ab γ̂n bc,y γ̂
n cd γ̂n da,y = γn ab γn ab,yy

= Tr
(
B2(xa)

)
Φ2e−4χ. (2.7.11)

We define

b(xa) =
1

12
Tr
(
B2(xa)

)
(2.7.12)

where the factor of 12 has been chosen for later convenience. From combining Eq.

(2.7.5) with Eqs. (2.5.11) and (2.5.12), we see that B (and thus b(xa)) is independent

of region, while A will change with each region according to Eq. (2.5.12).

From Eq. (2.7.3), we find

χn ,y = ±
√
b Φn 2 exp(−4 χn )− 2

3
κ2

5 Φn 2Λn

= Pn Φn
√
b exp(−4 χn )− 2

3
κ2

5Λn (2.7.13)
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where Pn is either ±1 and is constant in each bulk region. Differentiating Eq. (2.7.13)

gives

χn ,yy =
Φn y

Φ
χ,y − 2b Φn 2e−4 χn . (2.7.14)

The same result is obtained by substituting Eq. (2.7.3) into Eq. (2.7.6), and so we

see that these equations of motion are degenerate. This leaves only one equation of

motion (Eq. (2.7.13)) and one boundary condition (Eq. (2.7.7)) to satisfy.

III Classes of Solutions

If B(xa) ≡ 0, then the induced metric on all the branes are related to one another by

conformal transformations, and a four-dimensional effective action is easily calculated.

On the other hand, when B(xa) 6= 0, the induced metrics on each brane are not

simply related conformally, but through Eqs. (2.5.12) and (2.7.10). If solutions with

B(xa) 6= 0 were to exist, the four-dimensional effective theory would contain more

than one massless tensor degree of freedom; i.e., it would constitute a multigravity

theory (see Damour and Kogan [68]). No such degrees of freedom have been seen

in any linearized analyses3. It is important to note that this is not a Kaluza-Klein

mode. We believe that solutions with B(xa) 6= 0 are ruled out due to divergences at

y → ±∞, leading to a lack of global hyperbolicity in the spacetime, although we have

been unable to prove this rigorously. We will restrict attention to the case B(xa) = 0

for the remainder of this work.

IV General Solutions at Leading Order

With B(xa) ≡ 0, the field γ̂n ab becomes independent of y [see Eq. (2.7.10)], and also

independent of n by Eq. (2.5.12). This means that we can drop the index n from xan,

3In addition, it can be shown that in orbifolded models, there are no solutions with
B(xa) 6= 0; see Appendix B.
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wn, and γ̂n ab without causing confusion. With b(xa) = 0, the remaining equation of

motion and boundary condition simplify somewhat. Equation (2.7.13) becomes

χn ,y = Pn Φn
√
−2

3
κ2

5Λn, (2.7.15)

which implies that Λn < 0, and so the bulk regions must be slices of anti de-Sitter

space. Define

kn =

√
−κ2

5Λn

6
. (2.7.16)

We can use Eq. (2.7.15) for χn in Eq. (2.7.7) to obtain

knPn − kn+1Pn+1 =
1

3
κ2

5σn. (2.7.17)

These relations are the well-known “brane-tunings”, which determine the branes

tensions required in order to avoid a cosmological constant on the branes [6].

We may integrate Eq. (2.7.15) to find

χn (xa, y) =


2k0P0

∫ y
0

Φn (xa, y′)dy′ + f(xa) n = 0,

χn−1 (xa, n− 1) + 2knPn
∫ y
n−1

Φn (xa, y′)dy′ n > 0

(2.7.18)

where f(xa) is an arbitrary function. Note that the field χn is related to the distance

from the previous brane to y along a geodesic normal to the branes, made dimensionless

by the appropriate lengthscale in the bulk. In particular, χ describes the number

of e-foldings the warp factor in the metric provides between two points in the five-

dimensional spacetime. Assuming that Φ is not divergent, if exp( χn (y)) approaches

zero or ∞ anywhere, it can only occur as y → ±∞. We will restrict attention to the

cases

P0 = +1, and PN = −1. (2.7.19)

When these signs fail to hold, then the warp factor increases monotonically as one goes

to infinity, and it seems likely that the spacetime cannot be globally hyperbolic. We

exclude cases where exp( χn (y))→ 0 at finite y by restricting ourselves to topologically

connected spacetimes [52, 72].
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V Summary

We summarize our results so far. We have N branes, each with a brane tension which

has been carefully adjusted, according to (2.7.17). The branes divide our system into

N + 1 regions. Our coordinates are xa, describing four-dimensional space, and y,

describing the extra dimension.

We expanded the action in terms of our ε scaling parameter to separate the high-

and low-energy contributions. Specializing to a low-energy regime, we solved for the

high-energy dynamics, arriving at the metric for each region of our system:

dsn 2 = e χn (xc,y)γ̂ab(x
c)dxadxb +

χn 2
,y(x

c, y)

4k2
n

dy2, (2.7.20)

with χn given by Eq. (2.7.18), where Φn (xa, y) can be chosen freely. The parameters kn

are determined by the bulk cosmological constants and the five-dimensional Newton’s

constant, by Eq. (2.7.16). The derivative χ,y has fixed sign Pn = ±1 in each region,

although the derivative may approach zero as y → ±∞.

As an aside, when the metric in each region is in the form (2.7.20), the zeroth-order

action S0[gab] [Eq. (2.6.8)] evaluates to exactly zero. This can be seen by substituting

the metric (2.7.20) into the action and explicitly evaluating the integral over the y

dimension. All of the integrals become total derivatives whose boundary terms exactly

cancel the boundary terms present in the action at this order.

The background metric ansatz (2.7.20) is essentially the same as the zeroth-order

metric calculated by Kanno and Soda [62], taking Φ2(xa, y) = exp(2φ(y, x)) in their

notation. However, from here, we proceed without their assumption that φ(y, x) = φ(x).

The “näıve” ansatz and the CGR ansatz of Chiba [66] are also in the form of our

metric (2.7.20).
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2.8 The Action to Second Order

In this section, we investigate the action to second order in ε. By integrating out the

previously determined high-energy dynamics, we find the four-dimensional effective

action.

I Acquiring the Four-Dimensional Effective Action

Using the metric (2.7.20) in Eqs. (2.5.23) and (2.6.8), we can calculate the second-order

contribution to the action, S2. The result is

S2 [ γ̂n ab , χ
n , φn ] =

N∑
n=0

∫
Rn

d5xn
√
−γ̂ e χn

4κ2
5knPn

[
χn ,yR

(4) − 3 χn ,y∇2 χn − 2∇2 χn ,y

− 3

2
χn ,y(∇a χn )(∇a χ

n )− 2(∇a χn )(∇a χ
n

,y)
]

+
N−1∑
n=0

Sn m

[
e χn (xa,n)γ̂ab, φ

n
]
. (2.8.1)

Note that covariant derivatives written here are associated with the metric γ̂ab, as is

the four-dimensional Ricci scalar R(4).

To obtain the effective four-dimensional action, we integrate over y in the five-

dimensional action (2.8.1), as the dynamics of this dimension have already been solved.

The term involving the Ricci scalar can be integrated straightforwardly, as R(4) has

no y dependence, but the other terms require more manipulation. We can combine

the last four terms in the five-dimensional integral in the following way:

−3e χn χn ,y∇2 χn − 3

2
e χn χn ,y(∇a χn )(∇a χ

n )− 2e χn ∇2 χn ,y − 2e χn (∇a χn )(∇a χ
n

,y)

=
3

2

∂

∂y

(
e χn (∇a χn )(∇a χ

n )
)
−∇a

(
3e χn χn ,y∇a χ

n + 2e χn ∇a χ
n

,y

)
(2.8.2)

The covariant derivative commutes with the integration over the fifth dimension in

the action, and thus gives rise to a boundary term at xa →∞, which we discard. We
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obtain

S2 [ γ̂n ab , χ
n , φn ] =

N∑
n=0

∫
Rn

d5xn

√
−γ̂

4κ2
5knPn

∂

∂y

{
e χn R(4) +

3

2
e χn (∇a χn )(∇a χ

n )

}

+
N−1∑
n=0

Sn m

[
e χn (xa,n)γ̂ab , φ

n
]
. (2.8.3)

Integrating over y, we find boundary terms at each brane and at y = ±∞. We note

that the integral converges in the first and last regions because of the choices P0 = +1

and PN = −1, and so the terms evaluated at ±∞ vanish. We can rearrange the

remaining terms into a sum over the branes.

S2 [ γ̂n ab , χ
n , φn ] =

N−1∑
n=0

∫
d4x
√
−γ̂ 1

4κ2
5

(
1

knPn
− 1

kn+1Pn+1

)
×[

e χn R(4) +
3

2
e χn (∇a χn (xa, n))(∇a χ

n (xa, n))

]
y=n

+
N−1∑
n=0

Sn m

[
e χn (xa,n)γ̂ab , φ

n
]

(2.8.4)

II Field Redefinitions

For convenience, we define the following quantities.

An =

∣∣∣∣ 1

knPn
− 1

kn+1Pn+1

∣∣∣∣ , (2.8.5)

εn = sgn

(
1

knPn
− 1

kn+1Pn+1

)
, (2.8.6)

for 0 ≤ n ≤ N − 1. It is useful to note that εn can be written as, from Eq. (2.7.17),

εn = −sgn (σnPnPn+1) . (2.8.7)

We now have a four-dimensional Ricci scalar, and a number of scalar fields. The

values of the function χ(xa, n) evaluated on the branes become N scalar fields in the

four-dimensional action, and we denote these by

Ψn =
√
Aneχn , (2.8.8)
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where we use χn = χ(xa, n). The values of Ψn encode the distance between the branes,

along with some physical parameters. Note that the domain of Ψn is the positive reals.

There is a residual parameterization freedom which implies that one of the fields Ψn

is nondynamical, but before we fix this freedom, we first give the four-dimensional

low-energy action using the definitions so far. It is given by4

S [γ̂ab,Ψn, φ
n ] =

∫
d4x

√
−γ̂

4κ2
5

[
R(4) [γ̂ab]

(
N−1∑
n=0

εnΨ2
n

)
+ 6

N−1∑
n=0

εn(∇̂aΨn)(∇̂aΨn)

]

+
N−1∑
n=0

Sn m

[
Ψ2
n

An
γ̂ab, φ

n

]
(2.8.9)

where we have suppressed the subscript “2”, and will continue to do so from now on.

Here, we have used the four-dimensional metric γ̂ab to raise and lower indices, and ∇̂a

is the covariant derivative associated with this same metric.

The residual parameterization freedom is

χ(xa, y)→ χ(xa, y) + δχ(xa) (2.8.10)

γ̂ab(x
a)→ γ̂abe

−δχ(xa), (2.8.11)

under which the metric (2.7.20) is invariant. We can fix this freedom by specifying

the value of χ(xa, n) for any n. In order to remain general, let us choose χ(xa, T ) = 0,

for some T with 0 ≤ T ≤ N − 1. This causes the field ΨT to become non-dynamical.

We note that this means that the determinant of γ̂ is no longer constrained to be −1.

Some further field redefinitions now simplify the action. Let

Bn =
An
AT

, (2.8.12)

ψn =
√
Bneχn =

Ψn√
AT

. (2.8.13)

4In Appendix B, we show that an orbifolded N -brane model gives rise to this same
four-dimensional low-energy action with a rescaling of some parameters. Most of what
follows from here onwards is the same for orbifolded and uncompactified models.
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Our dynamical scalar fields are now ψn, 0 ≤ n ≤ N − 1, n 6= T . Again, the domain

of each ψn is the positive reals. Finally, we can define a four-dimensional effective

Newton’s constant as

1

2κ2
4

=
1

4κ2
5

AT . (2.8.14)

The action with these definitions is

S =

∫
d4x
√
−γ̂ εT

2κ2
4

[
R(4) [γ̂ab]

(
1 +

N−1∑
n=0
n6=T

εT εnψ
2
n

)
+ 6

N−1∑
n=1

εT εn(∇̂aψn)(∇̂aψn)

]

+ ST m [γ̂ab , φT ] +
N−1∑
n=0
n6=T

Sn m

[
ψ2
n

Bn

γ̂ab, φ
n

]
(2.8.15)

where the functional dependence of the action on [γ̂ab, ψn, φ
n ] has been suppressed to

save space. This is the four-dimensional effective action in the Jordan conformal frame

of the T th brane, BT . Note that the target space metric, determined by the kinetic

energy term for the scalar fields, is flat, and the target space manifold is a subset of

the quadrant of RN−1 in which all the coordinates ψn are positive, bearing in mind

that each ψn will be bounded either above or below by their definition (2.8.13) and

Eq. (2.7.18).

III Transforming to the Einstein Conformal Frame

The Einstein conformal frame is defined by an action in which the Ricci scalar (the

Einstein-Hilbert term) is canonically normalised, i.e., has a coefficient of m2
P/2. It is

typically possible to transform to the Einstein conformal frame by use of a conformal

transformation5.
5Exceptions exist in two spacetime dimensions, and points at which the coefficient

is vanishing in field space.
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Defining the function

Θ = 1 +
N−1∑
n=0
n6=T

εT εnψ
2
n, (2.8.16)

we transform to the Einstein conformal frame using the conformal transformation

gab = γ̂ab|Θ|.

The four-dimensional effective action becomes

S [gab, ψn, φ
n ] =

∫
d4x
√
−g εT sgn(Θ)

2κ2
4

[
R̃(4)[g]− 3

2Θ2
(∇̃aΘ)(∇̃aΘ)

+ 6
N−1∑
n=0
n6=T

εT εn
Θ

(∇̃aψn)(∇̃aψn)

]

+ ST m

[
1

|Θ|
gab, φT

]
+

N−1∑
n=0
n6=T

Sn m

[
ψ2
n

Bn|Θ|
gab, φ

n

]
(2.8.17)

where tildes refer to the metric gab. Note that the kinetic energy terms in this action

(2.8.17) have apparent divergences at Θ = 0. However, for any given set of signs εn

(which correspond to a choice of model), it can be shown that |Θ| > 0. This occurs

because of the way each ψn is bounded either above or below.

2.9 Analysis of the Action

In this section, we analyze the four-dimensional effective action (2.8.17) in a variety of

cases. We begin with the cases of one and two branes, which serve to highlight some

features of the model in the general case. In these special cases, our results reduce to

previously known results. We then analyze the general situation.
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I One-Brane Case

In the one brane case, the effective action simplifies greatly.

S[gab, φ
0 ] =

∫
d4x
√
−g ε0

2κ2
4

R̃(4)[g] + S0 m

[
gab, φ

0
]
. (2.9.1)

The four-dimensional effective action is just general relativity (ε0 = +1 if the brane

has positive tension). This corresponds to the RS-II model [7].

II Two-Brane Case

Here the parameter of importance is ε0ε1, which from Eqs. (2.7.17), (2.7.19) and

(2.8.6) is given by

ε0ε1 = − sgn (σ0σ1) . (2.9.2)

With P0 and P2 predetermined, it is possible for one brane tension to be negative,

but not both. Therefore ε0ε1 is positive if there is a negative tension brane, and is

negative if both branes have positive tension. Without loss of generality, we choose

T = 0. Using the definition (2.8.16) of Θ, the action (2.8.17) becomes

S =

∫
d4x
√
−g ε0 sgn(1 + ε0ε1ψ

2
1)

2κ2
4

[
R̃(4)[g] + 6

ε0ε1
(1 + ε0ε1ψ2

1)2
(∇̃aψ1)(∇̃aψ1)

]
+ S0 m

[
1

|1 + ε0ε1ψ2
1|
gab, φ

0

]
+ S1 m

[
ψ2

1

B1|1 + ε0ε1ψ2
1|
gab, φ

1

]
. (2.9.3)

The action is a functional of gab, ψ1, φ0 , and φ1 .

II.a Positive Brane Tensions

When both branes have positive tension, ε0ε1 = −1. Which of ε0 and ε1 is negative

depends on the sign of Θ. Combining Eqs. (2.8.16) and (2.8.13),

Θ = 1−B1e
χ1 . (2.9.4)
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From Eqs. (2.7.19) and (2.8.7), we see that

ε0 = −ε1 = −sgn(P1). (2.9.5)

Combining this with Eq. (2.7.18) and recalling that χ0 = 0 if T = 0, we see that the

exponential function in Eq. (2.9.4) is greater than unity for P1 = +1, and less than

unity for P1 = −1. If P1 = +1, then the brane tensions [Eq. (2.7.17)] require that

k0 > k1, and we see that B1 > 1, giving Θ < 0 for ε0 = −1, ε1 = +1. If P1 = −1, then

the brane tensions dictate that k0 < k1. Thus, in this case, B1 < 1, and so Θ > 0 for

ε0 = +1, ε1 = −1.

Assuming that 0 < ψ1 < 1 (Θ > 0, P1 = −1, ε0 = +1), we define

ϕ = µ tanh−1(ψ1) (2.9.6)

where

µ =

√
6

κ4

. (2.9.7)

The domain of ϕ is 0 to ∞. The action (2.9.3) then becomes

S[gab, ϕ, φ
0 , φ1 ] =

∫
d4x
√
−g
[

1

2κ2
4

R̃(4)[g]− 1

2
(∇̃aϕ)(∇̃aϕ)

]
+ S0 m

[
cosh2

(
ϕ

µ

)
gab, φ

0

]
+ S1 m

[
1

B1

sinh2

(
ϕ

µ

)
gab, φ

1

]
.

(2.9.8)

Requiring that the branes do not intersect or overlap gives

0 < ψ1 <
√
B1 =

√
1− k1/k2

1 + k1/k0

. (2.9.9)

Note that k1 < k2 to satisfy Eq. (2.7.17), and that
√
B1 < 1 (responsible for Θ > 0).

Thus, Eq. (2.9.9) is a more stringent constraint than 0 < ψ1 < 1.

In the situation where ψ1 > 1 (Θ < 0, P1 = +1, ε1 = +1), we define

ϕ = µ tanh−1

(
1

ψ1

)
. (2.9.10)
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The domain of ϕ is from 0 to ∞. The action (2.9.3) then becomes

S[gab, ϕ, φ
0 , φ1 ] =

∫
d4x
√
−g
[

1

2κ2
4

R̃(4)[g]− 1

2
(∇̃aϕ)(∇̃aϕ)

]
+ S0 m

[
sinh2

(
ϕ

µ

)
gab, φ

0

]
+ S1 m

[
1

B1

cosh2

(
ϕ

µ

)
gab, φ

1

]
,

(2.9.11)

which coincides with the previous action (2.9.8) if we swap the actions S0 m and S1 m

and rescale units in each matter action by factors of B
±1/2
1 .

The constraint on the radion field we impose to ensure that the branes do not

overlap in this case is

ψ1 >
√
B1 =

√
1 + k1/k2

1− k1/k0

> 1, (2.9.12)

where k1 < k0 from the brane-tunings (Eq. (2.7.17)).

The actions (2.9.8) and (2.9.11) coincide with formulae in the literature for the

action for the RS-I model, up to a rescaling of units [6, 66, 46] [also, c.f. Eq. (2.4.15)].

They describe a Brans-Dicke like scalar-tensor theory of gravity, with matter on each

brane having a different coupling strength to the scalar component.

II.b One Negative Brane Tension

If ε0ε1 = 1 then Θ > 0 always, and by requiring the conditions (2.7.19), both ε0 and

ε1 must be positive. We define

ϕ = µ tan−1(ψ1), (2.9.13)

where the domain of ϕ is 0 to (π/2)µ. The action (2.9.3) becomes

S[gab, ϕ, φ
0 , φ1 ] =

∫
d4x
√
−g
[

1

2κ2
4

R̃(4)[g] +
1

2
(∇̃aϕ)(∇̃aϕ)

]
+ S0 m

[
cos2

(
ϕ

µ

)
gab, φ

0

]
+ S1 m

[
1

B1

sin2

(
ϕ

µ

)
gab, φ

1

]
.

(2.9.14)
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Note that ϕ is a ghost field, which gives rise to the usual instability associated with a

negative tension brane.

III General Case of N branes

In the general case of N branes, it is convenient to redefine our fields in fieldspace.

Let P be the number of elements of the set {εT εn, 0 ≤ n ≤ N − 1, n 6= T} for which

εT εn = +1, corresponding to the number of scalar fields with positive coefficients

in the action (2.8.17) (ignoring the sign of Θ, and the kinetic-looking term for the

same). Note that 0 ≤ P ≤ N − 1. Also, let M = N − 1 − P be the number

of elements with εT εn negative, corresponding to the number of scalar fields with

negative coefficients. It is convenient to relabel the fields {ψn} based on which have

positive kinetic coefficient (ψ1, . . . , ψP ) and which have negative kinetic coefficient

(ψP+1, . . . , ψP+M), based on the action 2.8.15 (the coefficient for each term was εT εn).

We now define new coordinates ζ, θ1, . . . , θP−1 and η, λ1, . . . , λM−1, such that

(ψ1, . . . , ψP ) = ζ (cos(θ1), sin(θ1) cos(θ2), . . . , sin(θ1) sin(θ2) · · · sin(θP−1)) ,

(2.9.15a)

(ψP+1, . . . , ψP+M) = η (cos(λ1), sin(λ1) cos(λ2), . . . , sin(λ1) sin(λ2) · · · sin(λM−1)) .

(2.9.15b)

We choose η, ζ > 0. All of the angular fields (θi and λj) have a domain of 0 to π/2, as

each ψn is positive. The fields ζ and η have domains of 0 < η, ζ <∞. This is essentially

a transformation to spherical polar coordinates in fieldspace, with one sphere for the

positive-coefficient fields, and a separate sphere for the negative-coefficient fields. The

function Θ now becomes

Θ = 1 + ζ2 − η2. (2.9.16)

Using these field definitions, the four-dimensional low-energy action can be written
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in as

S[gab,Φ
A, φn ] =

∫
d4x
√
−gεT sgn (Θ)

[
R(4)[gab]

2κ2
4

− 1

2
γAB(ΦC)gab∇aΦ

A∇bΦ
B

]
+

N−1∑
n=0

Sn m

[
e2αn(ΦC)gab, φ

n
]
. (2.9.17)

Here,
{

ΦA
}
≡ {ζ, η, θ1 , . . ., θP−1, λ1, . . ., λM−1}, and γAB(ΦC) is the metric on field

space, given by

dσ2 = γABdΦAdΦB =
µ2

Θ

[
−dζ2

(
1− η2

Θ

)
− ζ2dΩ2

p + dη2

(
1 + ζ2

Θ

)
+η2dΩ2

m −
2ηζ

Θ
dηdζ

]
, (2.9.18)

where dΩ2
p = dθ2

1 + sin2(θ1)dθ
2
2 + . . . is the metric on the unit (P − 1)-sphere, and

similarly for dΩ2
m. The parameter µ is defined by µ =

√
6/κ4. The coupling functions

αn(ΦC) are given by

e2αT =
1

|Θ|
, (2.9.19a)

e2αn =
1

|Θ|
ψ2
n

Bn

, 0 ≤ n ≤ N − 1, n 6= T, (2.9.19b)

where Bn is given by Eq. (2.8.12), and ψn(ΦC) is defined by the relevant expression

in Eq. (2.9.15).

We have now arrived at the explicit form of the theory originally given in Eq.

(2.3.3). There are N − 1 scalar fields, with a field space metric given by (2.9.18). The

matter coupling functions are given by Eqs. (2.9.19). The relationship between the

five-dimensional gravitational constant and the four-dimensional effective gravitational

constant is given by Eq. (2.8.14). There are no mass terms for the scalar fields, so the

theory forms a massless multiscalar-tensor theory in a nonlinear sigma model.
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2.10 Discussion

This completes the explicit derivation of the low-energy effective action (2.3.3) in the

case of a specific model, and the illustration of our method of acquiring the four-

dimensional effective action. Although only the one application was demonstrated,

the method is generally applicable to compactified and orbifolded models6. Before

analyzing the physics of the four-dimensional effective action, we discuss various

aspects of the method and its results.

I Domain of Validity of the Four-Dimensional Description

We begin our discussion of the domain of validity of the four-dimensional description

given by Eq. (2.8.17) by recapping the method of computation discussed in Section

2.6.III. Starting from the five-dimensional action S, we define a rescaled action Sε

which has the expansion

Sε = S0 + ε2S2 . (2.10.1)

In Section 2.7 we found the most general solution of δS0 = 0, and substituting that

solution into S2, gave the four-dimensional action functional of Section 2.8.III7.

The basis of our approximation method is the smallness of the bulk radius of

curvature 1/kn compared to the radius of curvature Lc of the four-dimensional metric

eχγ̂ab. However, although this approximation is valid on all the branes, it inevitably

breaks down as y → ±∞, far from the branes, as Lc → 0, as discussed in Section

2.6.III. It is worth noting that in the special case where all of the induced metrics on

the branes are flat and there are no matter fields, the metric ansatz (with Φ = const)

is an exact solution to the five-dimensional Einstein equations, and this breakdown

does not occur.
6See Appendix B.
7The action S0 for the solution is zero, assuming the brane-tunings (2.7.17).
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One might expect contributions from the regime far from the branes to invalidate

our four-dimensional effective description. However, we expect that the contribution

to the action far from the brane will negligibly change the calculation, as in the

region in which we expect large departures from the derived metric, the warp factor

exponentially suppresses any contributions.

It is possible for our two-lengthscale expansion to break down not only asymptoti-

cally, but also in between branes. A number of models (e.g., [58, 52, 68, 72] to cite but

a few) discuss bounce behavior in the warp factor, where it decreases and increases

again in between branes, as with a cosh2 dependence. Typically, this behavior appears

when the metric γ̂ is a curved FRW metric. It is a limitation of our method that

this bounce is not evident in our solutions, as it explicitly requires coupling between

the O(1) and O(ε2) components (in particular, the four-dimensional Ricci scalar).

Thus, this behavior is excluded by the underlying assumptions of our method, as

near the turning point of these bounces, the separation of lengthscales has broken

down. We note, however, that cosh2 behavior is likely to be forbidden in the first

or last (y → ±∞) regions by global hyperbolicity. It is also possible to produce

sinh2 behavior in the warp factor. In between branes, this can lead to topologically

disconnected regions of spacetime as discussed in [52], which we have excluded by

assumption. In the first or last regions, correctly accounting for this behavior requires

that the integration over the fifth dimension be truncated. However, the contributions

to our effective action from integrating beyond these regions is again exponentially

suppressed and negligible. In the regime in which the separation of lengthscales is

valid, our solutions are in agreement with models displaying these types of behavior.

For black holes, the solution given by our effective action is subject to the Gregory-

Laflamme instability [73] and the final outcome is uncertain (see [74] and citations

thereof). The five-dimensional stability of solutions for which the induced metric on

the branes is not nearly flat (e.g., black holes and neutron stars) is an interesting
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open question, although recent numerical results [75] suggest that such solutions exist.

We conjecture that all the solutions without horizons are stable and are reasonably

described by our four-dimensional effective action.

We may also consider the regime in which Lc � L, such as will occur a long way

away from the branes. In this limit, the physical description would change from being

that of decoupled fibers to that of decoupled four-dimensional hypersurfaces [one

should solve the O(ε2) contribution to the action first, and substitute that into the

O(1) contribution to the action]. This approach may yield a matched asymptotic

expansion approach to obtaining a solution far from the branes. Our method may

therefore be useful for investigating the regime between Minkowski space on a brane

and a black hole on a brane.

It is important to note that our method does not yield the leading order five-

dimensional metric. This can be seen from the fact that our four-dimensional action

depends only on the fields χn evaluated on the branes, and the values of these fields

between the branes are not determined. However, knowledge of the leading order

five-dimensional metric is, rather surprisingly, not a prerequisite for correctly capturing

the leading order four-dimensional dynamics. Most other methods rely on knowledge of

the five-dimensional behavior of the metric to calculate the effective four-dimensional

equations of motion, and our method is somewhat unique in this regard.

Our method of computation correctly captures the leading order dynamics of the

system. However, there will be higher-order corrections, suppressed by powers of ε2.

In particular, the fields χn and Φn can be expanded as

χn = χn (0) + ε2 χn (2) +O(ε4), (2.10.2a)

Φn = Φn (0) + ε2 Φn (2) +O(ε4). (2.10.2b)

Throughout this chapter, we have dealt only with the fields χn (0) and Φn (0). The

necessity of higher-order terms can be seen from the exact, five-dimensional equations
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of motion, which are derived in Appendix A. For example, the exact Israel junction

conditions are given by Eq. (A.10). If we substitute the expansions (2.10.2) into Eq.

(A.10), and use (2.7.7) [with χn and Φn replaced by χn (0) and Φn (0)] together with

the brane-tuning conditions (2.7.17), we find that the higher-order corrections χn (2)

and Φn (2) are related to the matter stress energy tensors on the brane. Our results

confirm the suggestion of Kanno and Soda that these higher-order corrections do not

affect the four-dimensional effective action to leading order [67].

II Models That Violate the Brane Tension Tunings

If a brane’s tension is adjusted so as to violate the tuning condition (2.7.17), then it is

possible to view the situation as having either detuned brane tensions or detuned bulk

cosmological constants. For accounting purposes, it is simpler to think of the bulk

cosmological constants as being detuned. When this occurs, the exact equations of

motion in the bulk (A.6) to (A.10) imply that a nonzero Ricci curvature is induced to

compensate for the detuning. Exact solutions have been calculated in highly symmetric

cases, see for example Ref. [72]. In general, the exact nature of the perceived detuning

is nontrivial, as the bulk cosmological constants on either side of the offending brane(s)

can appear detuned by different amounts to compensate.

If the deviation from the brane-tuning conditions is small [∆σ/σT = O(ε2)], then

we can approximate the contribution to the four-dimensional effective action as

∆S = −
N−1∑
n=0

∫
d4x
√
− hn (σn − σTn ), (2.10.3)

where σTn is the tuned value for the nth brane, given by (2.7.17). This approximation

is of the same order as the other approximations we have made in our method. The

net result is then an effective cosmological constant on each brane, given by

Λ(4)
n = σn − σTn , (2.10.4)
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which vanishes when the brane tensions are tuned. [Note that this expression differs

from results given in the literature for the RS-II model, see for example Ref. [42], but

the difference is O(ε4)].

If the detuning of a brane’s tension from its tuned value should become too large

[O(1) rather than O(ε2)], then the curvature induced by the four-dimensional effective

cosmological constant can cause the radius of curvature on a slice of constant y close

to the branes to violate the approximations used in our method, which implies that

our four-dimensional effective action will not be a good description of a system in this

regime.

III Multigravity

Theories with more than one independent dynamical tensor field are called multigravity

theories; see the general discussion in Damour and Kogan [68]. The models in this

work may exhibit two forms of multigravity, although we have ignored one of them

entirely.

The first form of multigravity is the possible existence of a second tensor field,

given by the matrix B(xa) in Eq. (2.7.10). We argued in Section 2.7.III that this form

of multigravity is likely forbidden.

The second form of multigravity arises from the the fact that outside of the low-

energy regime, the models will contain Kaluza-Klein graviton modes. These modes

will have masses that are formally of order L−1, but may be much lighter due to

exponential suppression factors, and so may be phenomenologically important (so-

called “ultra-light modes”) [49, 50]. Our method of analysis automatically excludes all

massive fields (formally, we take ε sufficiently small to overcome any large exponential

factors), so we have neglected all graviton Kaluza-Klein modes. It is likely that some

of these modes are in fact ultralight in our model, as in the analyses of Damour and
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Kogan [49, 50, 68]. We discuss Kaluza-Klein modes in Appendix C.

IV Evaluation

Our goal in this chapter was to devise a simple method by which to obtain an

effective four-dimensional action to capture the leading-order effects of braneworld

models. Although the description of the method became reasonably long and rather

mathematical, most of the effort contained here involved book-keeping and justifying

approximations. The application of the method is actually reasonably quick and

straightforward, as we demonstrate in Appendix B, where we apply the method to an

orbifold model.

In the appropriate limits, the method yields results that are consistent with the

literature, and we are satisfied that it captures the leading order dynamics of five-

dimensional models, especially with regards to the radion structure. One feature of this

method is that the Kaluza-Klein gravitational modes have been truncated. However,

this is also a drawback in that there is no simple manner in which to reincorporate their

effects. However, given that our four-dimensional metric has been left arbitrary and

dynamical (within the regime of validity), no general expansion for the Kaluza-Klein

tower is possible, and so acquiring a four-dimensional effective description for these

modes as massive gravitational modes cannot be performed anyway.

Having developed a four-dimensional effective action, it is now time to investigate

the physics of this model, and apply both theoretical and experimental constraints on

the parameter space. We perform this undertaking in the following chapter.
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Chapter 3

Gravitational Interactions in

Multibrane-Worlds

Contents

3.1 Parameterization of Field Space . . . . . . . . . . . . . . 68

3.2 Physically Viable Models . . . . . . . . . . . . . . . . . . . 71

3.3 Specializing to Physically Viable Cases . . . . . . . . . . 77

3.4 Observational Constraints . . . . . . . . . . . . . . . . . . 81

3.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

In the previous chapter, we proposed an approximation scheme based upon a two-

lengthscale expansion which can be used to evaluate a four-dimensional low-energy

action for five-dimensional braneworld models, and demonstrated its application to

an uncompactified N -brane model. We now turn to analyzing the physics of the

four-dimensional effective action for this model.

We investigate the parameter space of the general model, and find regions in

which the theory has no ghosts. The parameter space is further refined by imposing

observational constraints from Solar System tests of gravity. We consider the possibility

of placing dark matter and Standard Model fields on separate branes, and by comparing

to observational data, find that the vast majority of the dark matter must reside on

our brane in the models considered.

Our motivation in analyzing general N -brane models is to determine whether

67



the presence of extra branes may overcome some of the constraints the RS-I and

RS-II models have, particularly with regards to radion stabilization requirements for

experimentally viable models. We are also interested in potential applications to

models of dark matter and energy.

Repeated here for convenience are the low-energy effective action, target space

metric, and coupling functions, for convenience. The low-energy effective action, as

derived in the previous chapter [Eq. (2.9.17)], is

S[gab,Φ
A, φn ] =

∫
d4x
√
−gεT sgn (Θ)

[
R(4)[gab]

2κ2
4

− 1

2
γAB(ΦC)gab∇aΦ

A∇bΦ
B

]
+

N−1∑
n=0

Sn m

[
e2αn(ΦC)gab, φ

n
]
. (3.0.1)

The field space metric [Eq. (2.9.18)] is

dσ2 = γABdΦAdΦB =
µ2

Θ

[
−dζ2

(
1− η2

Θ

)
− ζ2dΩ2

p + dη2

(
1 + ζ2

Θ

)
+η2dΩ2

m −
2ηζ

Θ
dηdζ

]
. (3.0.2)

Finally, the coupling functions [Eqs. (2.9.19)] are

e2αT =
1

|Θ|
, (3.0.3a)

e2αn =
1

|Θ|
ψ2
n

Bn

, 0 ≤ n ≤ N − 1, n 6= T. (3.0.3b)

This chapter is based on work originally presented in [2].

3.1 Parameterization of Field Space

We begin our investigation by finding coordinates on field space which diagonalize the

field space metric, Eq. (3.0.2). This is particularly useful for identifying the presence

of any unphysical ghost modes. We look at two special cases before analyzing the

general case. Recall that P is the number of terms with positive εT εn, and M the

number of terms for which it is negative. The two must add to give P +M = N − 1.
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I Negative Definite Field Space Metric

In the case M = 0, the general metric reduces to

(1 + ζ2)

µ2
dσ2 = − 1

1 + ζ2
dζ2 − ζ2dΩ2

p. (3.1.1)

This can be rewritten as

dσ2 = − da2 − µ2 sin2

(
a

µ

)
dΩ2

p, (3.1.2)

where a = µ tan−1(ζ), with 0 ≤ a ≤ πµ/2.

II Positive Definite Field Space Metric

In the case of P = 0, the general metric reduces to

(1− η2)

µ2
dσ2 = dη2 1

1− η2
+ η2dΩ2

n. (3.1.3)

For the case where η < 1, this can be rewritten as

dσ2 = da2 + µ2 sinh2

(
a

µ

)
dΩ2

n, (3.1.4)

where a = µ tanh−1(η), with 0 < a <∞. This is shown in Section 3.2 to be the only

physically relevant case.

For the case of η > 1, the metric (3.0.2) can be rewritten as

dσ2 = da2 − µ2 cosh2

(
a

µ

)
dΩ2

n, (3.1.5)

where a = µ coth−1(η), and 0 < a <∞.

We see that the two cases η > 1 and η < 1 are topologically disconnected, one

being a metric on elliptic space and the other being a metric on de Sitter space, and

so the divergence at η = 1 in the metric (3.1.3) is simply a coordinate singularity.
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III General Case

In the general case with M > 0, P > 0, the metric (3.0.2) is non-diagonal. It can be

diagonalized using suitable coordinate transformations in the three different cases

Θ < 0, 0 < Θ ≤ 1, and Θ ≥ 1. Recall that

Θ = 1 + ζ2 − η2. (3.1.6)

III.a Θ < 0

For Θ to be negative, we require from Eq. (3.1.6) that η2 − ζ2 > 1. Recall that η and

ζ are non-negative. We define new coordinates (a, b) by

η = a cosh

(
b

µ

)
, (3.1.7a)

ζ = a sinh

(
b

µ

)
, (3.1.7b)

where a > 1, b ≥ 0. The metric (3.0.2) becomes

dσ2 =
a2

a2 − 1

[
db2 +

µ2

a2(a2 − 1)
da2 + µ2 sinh2

(
b

µ

)
dΩ2

p − µ2 cosh2

(
b

µ

)
dΩ2

m

]
.

(3.1.8)

Defining c by a = cosec(c/µ) with 0 < c < πµ/2, the metric becomes

dσ2 = sec2

(
c

µ

)(
db2 + dc2 + µ2 sinh2

(
b

µ

)
dΩ2

p − µ2 cosh2

(
b

µ

)
dΩ2

m

)
. (3.1.9)

III.b 0 < Θ ≤ 1

In this regime, η > ζ as previously, but with η2− ζ2 ≤ 1. We use the same coordinate

definitions (3.1.7), but with 0 ≤ a < 1 and b ≥ 0. The metric is the same as Eq.

(3.1.8). This time, define c = µ sech−1(a) with 0 < c <∞, which gives

dσ2 = cosech2

(
c

µ

)[
−db2 + dc2 − µ2 sinh2

(
b

µ

)
dΩ2

p + µ2 cosh2

(
b

µ

)
dΩ2

m

]
(3.1.10)

as the metric.
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III.c 1 ≤ Θ

In this region of field space, ζ ≥ η. We define coordinates (a, b) by

η = a sinh

(
b

µ

)
, (3.1.11)

ζ = a cosh

(
b

µ

)
, (3.1.12)

with domains of a ≥ 0, b ≥ 0. The metric (3.0.2) in these coordinates is

dσ2 =
a2

1 + a2

[
− µ2

a2(1 + a2)
da2 + db2 − µ2 cosh2

(
b

µ

)
dΩ2

p + µ2 sinh2

(
b

µ

)
dΩ2

m

]
.

(3.1.13)

If we define c = µ cosech−1(a) with 0 < c <∞, the metric becomes

dσ2 = sech2

(
c

µ

)[
−db2 + dc2 − µ2 sinh2

(
b

µ

)
dΩ2

p + µ2 cosh2

(
b

µ

)
dΩ2

m

]
. (3.1.14)

The two cases 0 < Θ ≤ 1 and Θ ≥ 1 are two coordinate patches on the same

manifold. We see that the apparent divergence in the metric (3.0.2) at η2 − ζ2 = 1

is just a coordinate divergence; it delineates the boundary between topologically

disconnected spaces (Θ > 0 and Θ < 0). We show in Section 3.2 that only one of these

cases is physically viable, and corresponds to case 3.1.II with a different choice of T .

3.2 Physically Viable Models

In this section, we impose the constraint that all kinetic terms in the Einstein conformal

frame have the correct signs, in order to exclude ghosts. This requires that the field

space metric have positive definite signature. Of the field space configurations, only

those giving rise to the metrics (3.1.4) and (3.1.9) (with M = 1) meet this condition.

We investigate the constraints this imposes on the parameters of the model.

Recall that P is the number of parameters in the set {εT εn, n 6= T} which are

positive, and M = N − 1− P is the number which are negative. The metric (3.1.4)
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occurs when P = 0 and M = N − 1. This requires all εn to have the same sign, except

for εT which has the opposite sign. It also requires Θ > 0.

The metric (3.1.9) occurs with the correct signature when M = 1 and P = N − 2.

This requires all εn (including εT ) to have the same sign except for one (not εT ), which

has the opposite sign. This metric also requires Θ < 0.

Combining these two cases, we see that all εn (including εT ) must have the same

sign except one, which must be opposite. If this special n is labelled S, then evidently

the first case [with metric (3.1.4)] corresponds to the choice S = T , while the second

case corresponds to S 6= T [with metric (3.1.9)]. We now investigate what constraints

the requirements for these metrics impose.

At brane Bn, where the bulk regions n and n + 1 meet, there are four possible

combinations for the parameters Pn and Pn+1, namely (Pn, Pn+1) = (−,−), (−,+),

(+,−) and (+,+). Furthermore, the bulk cosmological constant can either increase

or decrease across the brane. The sign of the brane tension σn and the sign of εn for

each of these eight cases is given in Fig. 7, where the warp factor is plotted for each

situation. Below, we refer to these eight possibilities as cases 1 through 8. We begin

by looking at the situation where a single εn is positive (0 ≤ n ≤ N − 1), and then

look at the situation where a single εn is negative.

I A single brane with εn positive

Recall that Pn is the sign of the slope of the warp factor in Rn. Using P0 = +1 and

PN = −1 (which was assumed in deriving the four-dimensional low-energy action),

we need a turning point in the warp factor somewhere in the progression of branes,

which restricts us to either case 2 or case 6. Both of these cases have positive ε, and

so we require that all other εn are negative. Given that if the warp factor turns back

upwards after turning downwards, it would need to turn around again using another
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Figure 7: The behavior of the warp factor at a brane interface in the eight possible
configurations. An increasing warp factor in a region has Pn = +1, while
a decreasing warp factor has Pn = −1. In cases 2, 3, 6 and 7, the adjacent
bulk cosmological constants can be equal. The horizontal axis in all plots
is the y coordinate. Note that cases 2 and 6 are equivalent, for all intents
and purposes, as are cases 3 and 7.

case 2 or 6 which would introduce a second positive ε, we see that the warp factor is

only allowed to increase, turn around, and then decrease. The only way to continue

increasing with negative ε is using case 5, and the only way to decrease with negative

ε is using case 4. Thus, the progression of cases across the branes must go

5, . . . , 5, (2 or 6), 4, . . . , 4. (3.2.1)

It is unnecessary to have any branes with case 5 or 4 (i.e., the first or last case may

be 2/6). Note that cases 2, 4, 5 and 6 all correspond to positive tension branes.

Given the growth and fall of the warp factor, there can only be one brane on which

the warp factor is a maximum. We call this the “central” brane. Choose T to be this

brane, such that χ(xa, T ) = 0, and so the warp factor is unity on the brane where

the warp factor is a maximum. With the progression (3.2.1), εT = +1, and all other

εn = −1. We have P = 0 and M = N − 1, and so we require that Θ > 0 using these

field definitions.
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We are interested in the sign of Θ, to see if the requirement that Θ > 0 is met for

the metric (3.1.4). As An > 0, it is sufficient to know the sign of ATΘ. We have

ATΘ = AT −
∑
n 6=T

Ane
χn . (3.2.2)

Now, given that the warp factor is a maximum on BT and we know that Pn = −1 for

n > T , it follows that χn > χn+1 for n > T . Similarly, we have χn < χn+1 for n < T .

We now consider the expression for An [Eq. (2.8.5)] based on what we know about Pn

and kn from the progression (3.2.1).

AT = 1/kT + 1/kT+1

An = 1/kn − 1/kn+1 (n > T )

An = 1/kn+1 − 1/kn (n < T ) (3.2.3)

Thus, Θ may be written as

ATΘ =
∑
n≤T
n6=0

1

kn
(eχn − eχn−1) +

1

k0

eχ0 +
∑
n≥T

n 6=N−1

1

kn+1

(eχn − eχn+1) +
1

kN
eχN−1 . (3.2.4)

Each term in both sums is positive, and so Θ > 0.

Thus, we see that a situation with all εn parameters negative bar one produces an

action with no incorrectly signed kinetic terms. Furthermore, this choice of parameters

requires all the brane tensions to be positive. Finally, the Ricci scalar in the action

has positive coefficient, as εT sgn(Θ) = +1. We investigate the properties of models in

this parameter space in the remainder of this chapter.

II A single brane with εn negative

Here, the number of possibilities is larger than in the previous case. By using the

same logic as above, we find that the following progressions of cases are the only ways
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to meet the required conditions:

Option 1: 1, . . . , 1, 5, 1, . . . , 1, (2 or 6), 8, . . . , 8 (3.2.5a)

Option 2: 1, . . . , 1, (2 or 6), 8, . . . , 8, 4, 8, . . . , 8 (3.2.5b)

Option 3: 1, . . . , 1, (2 or 6), 8, . . . , 8, (3 or 7), 1, . . . , 1, (2 or 6), 8, . . . , 8 (3.2.5c)

Each of these cases requires one or more negative tension branes. We consider each of

these cases in turn.

Option 1:

Let the one negative εn be εT , corresponding to case 5. One brane will have the

maximum warp factor; call this brane X. Note that X 6= T , as brane T , being case

5, does not have the maximum warp factor. We now have εT = −1, and all other

εn = +1, and so we have P = 0 once again, which requires Θ > 0. Consider the sign

of ATΘ. We have

ATΘ = AT −
∑
n 6=T

Ane
χn . (3.2.6)

We can once again calculate An explicitly.

AT = 1/kT+1 − 1/kT , An = 1/kn − 1/kn+1 (0 ≤ n ≤ X − 1, n 6= T ),

AX = 1/kX + 1/kX+1, An = 1/kn+1 − 1/kn (n > X) (3.2.7)

ATΘ can then be expressed as

ATΘ = − 1

k0

eχ0 −
X∑
n=1

1

kn
(eχn − eχn−1)− 1

kN
eχN−1 −

N−2∑
n=X

1

kn+1

(eχn − eχn+1) . (3.2.8)

Here, all bracketed terms are positive. Thus, Θ < 0, in contradiction of the requirement

that Θ > 0 necessary for this situation.

Option 2:

This case proceeds in exactly the same manner as Option 1, and we again find Θ < 0,

in contradiction of the requirements for this situation.
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Option 3.

This case is a little more complicated. Let T be the one brane with negative ε,

corresponding to case 3 or 7. Two branes will have a local maximum warp factor; let

them be L and R (to the left and right of brane T ). Now, consider ATΘ, which we

require to be positive in this situation (as we once again have P = 0).

ATΘ = AT −
∑
n 6=T

Ane
χn . (3.2.9)

This time, we have

An =
1

kn
− 1

kn+1

, 0 ≤ n < L, T < n < R,

An =
1

kn+1

− 1

kn
, L < n < T, R < n,

AL =
1

kL
+

1

kL+1

, AT =
1

kT
+

1

kT+1

, AR =
1

kR
+

1

kR+1

. (3.2.10)

Combining these, we find

ATΘ = − eχ0

k0

−
L∑
n=1

1

kn
(eχn − eχn−1)−

T−1∑
n=L

1

kn+1

(eχn − eχn+1)

−
R∑

n=T+1

1

kn
(eχn − eχn−1)−

N−1∑
n=R

1

kn+1

(eχn − eχn+1)− eχN−1

kN
. (3.2.11)

Once again, Θ is negative, and so this configuration also creates a contradiction.

III The Effect of Negative Tension Branes

From the above arguments, we see that the only ghost-free configurations are those

which do not have any negative tension branes. This is consistent with the well-known

local arguments for the instability of a negative tension brane. We note that by just

using positive tension branes with the assumption that P0 = +1 and PN = −1 (and

ignoring the requirement of the different εn parameters having specific signs), the only

possible combination is (3.2.1), and so it is the presence of negative tension branes
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Figure 8: Diagram of a physically allowable warp factor between branes, and the
associated bulk cosmological constants (dashed). Branes are represented
as vertical lines. The bulk cosmological constants are negative, while the
warp factor lies between 0 and 1.

which are giving rise to the instability. Any valid configuration which only has positive

tension branes will not have this instability.

The combination of cases (3.2.1) provides a rather tight restriction on the pro-

gressions of the bulk cosmological constant which can give rise to physically viable

scenarios. Recalling that the bulk cosmological constants are negative, we require the

bulk cosmological constants to increase across the branes monotonically to a maximum,

and then decrease monotonically (see Fig. 8). Note that in the special case where

the first (last) brane has the maximum warp factor, then |Λ| can be monotonically

increasing (decreasing).

3.3 Specializing to Physically Viable Cases

In this section, we specialize to the physically viable cases discussed above, and find a

set of variables which simplifies the action.
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I The Physical Action

We previously found that the only physically viable configuration for the model is

the configuration (3.2.1), in which the warp factor increases to a maximum, and then

decreases again, with all brane tensions positive. We denote by n = T the index of

the brane with the maximum warp factor, and call this brane the “central brane”.

Specializing Eq. (2.8.15) to these parameters, we find

S[γ̂ab, ψn, φ
n ] =

∫
d4x
√
−γ̂ 1

2κ2
4

R(4) [γ̂ab]

1−
N−1∑
n=0
n6=T

ψ2
n

− 6
N−1∑
n=0
n6=T

(∇̂aψn)(∇̂aψn)


+ ST m

[
γ̂ab , φT

]
+

N−1∑
n=0
n6=T

Sn m

[
ψ2
n

Bn

γ̂ab, φ
n

]
. (3.3.1)

This is the action in the Jordan conformal frame of the central brane.

As P = 0, M = N − 1, the function Θ is now given by

Θ = 1−
N−1∑
n=0
n6=T

ψ2
n = 1− η2, (3.3.2)

and we know that Θ > 0 from the arguments of the previous section. We now follow

the field redefinitions (2.9.15b) exactly, transforming into spherical polar coordinates.
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Let (λ1, . . . , λN−2) be angular coordinates such that

ψ0

η
= cos(λ1) = f0 (3.3.3a)

ψ1

η
= sin(λ1) cos(λ2) = f1 (3.3.3b)

...

ψT−1

η
= sin(λ1) . . . sin(λT−1) cos(λT ) = fT−1 (3.3.3c)

ψT+1

η
= sin(λ1) . . . sin(λT ) cos(λT+1) = fT+1 (3.3.3d)

...

ψN−2

η
= sin(λ1) . . . sin(λN−3) cos(λN−2) = fN−2 (3.3.3e)

ψN−1

η
= sin(λ1) . . . sin(λN−3) sin(λN−2) = fN−1. (3.3.3f)

Defining a = µ tanh−1(η) with a > 0 as in Section 3.1.II, we have our final four-

dimensional low-energy action, written in the Einstein conformal frame, where gab =

Θγ̂ab.

S =

∫
d4x
√
−g

[
R(4)[g]

2κ2
4

− (∇a)2

2
− µ2

2
sinh2

(
a

µ

)N−2∑
n=1

{
n−1∏
m=1

sin2(λm)

}
(∇λn)2

]

+ ST m

[
cosh2

(
a

µ

)
gab, φT

]
+

N−1∑
n=0
n6=T

Sn m

[
sinh2

(
a

µ

)
f 2
n

B′n
gab, φ

n

]
(3.3.4)

The functional dependence of the action on [gab, a, λn, φ
n ] has been suppressed for

space, and (∇X)2 = (∇aX)(∇aX). In a more convenient notation, the field space

metric is

dσ2 = da2 + µ2 sinh2

(
a

µ

)
dΩ2

n, (3.3.5)

where dΩ2
n = dλ2

1 + sin2(λ1)dλ2
2 + . . . is the metric on the unit N − 2 sphere. This is

the metric on hyperbolic space.

The target space will not be all of the quadrant of (N − 1)-dimensional hyperbolic

space for which all the field coordinates are positive, as we have yet to impose the
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constraint of having no branes intersecting, which was implicit in the derivation of

the action. In the general case, these constraints are

χn < χn+1, n < T, (3.3.6a)

χn > χn+1, n > T, (3.3.6b)

where χn is related to ψn by Eq. (2.8.13).

II The Effect of One Brane on Another

Given the low-energy action (3.3.4), it is interesting to ask about the effect one brane

has on another, depending on how they are located. To investigate this, we consider

two separate scenarios, one with N branes, and one with N + 1 branes, where an extra

brane has been added after the last brane in the original scenario. The effect of this

extra brane on η2 is to add an extra term to the sum (3.3.2). In the scenario with

N + 1 branes,

η2 = η2
0 +BN+1e

χN , (3.3.7)

where η0 is the value of η in the scenario with N branes.

The continuity of χ(xa, y) across branes requires that

eχN = eχN−1e−2kNdN , (3.3.8)

where dN is the geodesic distance between the now second last and last (newly added)

branes. As exp(χN−1) ≤ 1 (χT = 0 is the maximum χ), this contribution to η2

becomes exponentially small as the distance to the new brane increases. Looking

at Eqs. (3.3.3), we see that the change to the angular fields is also exponentially

suppressed, and so the contribution of this new brane to the gravitational coupling is

exponentially suppressed on all other branes. We therefore infer that the effect of the

position of one brane on another, insofar as that information is coded into the radion
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fields, grows exponentially small as the distance between the branes increases. Given

that the interbrane distances must be large compared to the AdS radii of curvature in

order to meet the constraint from γ (see Section 3.4.I), this implies that the physics

of a model with a large number of branes will dominated by the central brane and

those branes nearest to it.

3.4 Observational Constraints

The theories (3.3.4) that are not ruled out by instabilities contain several massless

radion fields, which will mediate long range forces and give rise to corrections to

general relativity. Therefore, these theories will be subject to constraints arising from

Solar System and other tests of general relativity. The nature of these constraints

depends on which brane normal visible matter is assumed to reside. In this section,

we investigate the extent to which these radion fields modify general relativity, and

determine the corresponding observational constraints on the parameters of the theory.

I Eddington PPN Parameter

The Eddington parameterized post-Newtonian (PPN) parameter γ, which measures

deviations from general relativity, is one of the most tightly constrained numbers from

Solar System measurements of gravity. In this section, we compute this parameter

from the action (3.3.4).

As shown in Ref. [76], for a theory of the form

S[gab,Φ
A, φn ] =

∫
d4x
√
−g
{

1

2κ2
4

R(4)[gab]−
1

2
γAB(ΦC)gab∇aΦ

A∇bΦ
B

}
+

N−1∑
n=0

Sn m

[
e2αn(ΦC)gab, φ

n
]

(3.4.1)
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where ΦA are scalar fields and γAB(ΦC) is the metric on field space, the Eddington

PPN γ parameter for observers on brane n is given by

1− γ =
2 αn 2

0

1 + αn 2
0

(3.4.2)

where

αn 2
0 =

2

κ2
4

γAB
∂αn
∂ΦA

∂αn
∂ΦB

(3.4.3)

and γAB is the inverse field space metric. For our theory (3.3.4), we have ΦA ≡ (a ,

λ1, . . . , λN−2), the field space metric is given by Eq. (3.3.5), and the functions αn are

given by Eqs. (3.3.3) and (3.3.4).

We calculate γ for each of our branes. On the central brane, we find that

αT 2
0 =

1

3
η2, (3.4.4)

where η = tanh(a/µ) has been used. As 0 < η < 1, it is possible for αT 2
0 to be

sufficiently small on this brane to meet experimental constraints, which require that

[77]

|γ − 1| ≤ 2.3× 10−5. (3.4.5)

This constraint implies that the brane which is closest to the central brane must be at

least 5 times the bulk curvature scale away from it [from Eqs. (2.7.18), (2.8.13) and

(3.3.2)].

For the other branes, let

p(n) =


n, n < T

n− 1, n > T

(3.4.6)

in order to account for the hole in the sum over the matter actions in Eq. (3.3.4). For
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brane n, we calculate αp 2
0 to find

αp 2
0 =

1

3η2

[
1 + (1− η2)

{
p∑
j=1

cot2(λj)∏j−1
m=1 sin2(λm)

+ (1− δp,N−2)
tan2(λp+1)∏p
m=1 sin2(λm)

}]
(3.4.7)

>
1

3η2
. (3.4.8)

As 0 < η < 1, none of these branes can give rise to a γ parameter consistent with our

observed Universe, and thus for this type of model not to be observationally excluded

requires that we live on the central brane, where the warp factor is maximized. This

implies that models of the form we are considering are unsuitable for explanations of

the hierarchy problem, as no hierarchy can be obtained when considering Standard

Model fields to be living on the central brane. Solving the hierarchy problem requires

stabilizing at least some of the radion modes.

II Dark Matter Limits

One of the motivations behind braneworld models is that the sequestering that occurs

between matter on different branes may provide a natural explanation for the weakness

of the coupling between normal matter and dark matter. Because of the different

coupling factors of the metric to matter on different branes, there is a different

Newton’s constant for each brane, as well as different interaction strengths between

matter on separate branes. As such, the Newton’s constant becomes a Newton’s

matrix. In this section, we calculate the Newton’s matrix measured by observers on

different branes.

The Newton’s matrix depends on the brane on which the observer resides, since

the units in terms of which the Newton’s constant is measured vary from one brane

to another. As the above section constrains normal matter to live on the central

brane, we calculate the Newton’s matrix from the perspective of the central brane.
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Generalizing the arguments presented in the appendix of [78], for a theory of the form

(3.4.1), we calculate the elements of the Newton’s matrix to be

Gmn
eff =

κ2
4

8π
e2αT

(
1 +

2

κ2
5

γAB
∂αm
ΦA

∂αn
ΦB

)
, (3.4.9)

where Gmn
eff measures the strength of the gravitational interaction between matter on

brane n and matter on brane m. Note that for m = n, the quantity in the brackets is

1 + αn 2
0.

When calculating the elements of (3.4.9), it is again convenient to write the

quantities in terms of η = tanh(a/µ). We also use p(n) [Eq. (3.4.6)], and similarly

define q(m), in order to account for the missing term in the matter action sum in Eq.

(3.3.4). We find

GTT
eff =

κ2
4

8π
e2αT

(
1 +

η2

3

)
, (3.4.10a)

GTp
eff =

κ2
4

8π
e2αT

(
1 +

1

3

)
, (3.4.10b)

Gpp
eff =

κ2
4

8π
e2αT

(
1 +

1

3η2

[
1+

(1− η2)

{
p∑
j=1

cot2(λj)∏j−1
k=1 sin2(λk)

+ (1− δp,N−2)
tan2(λp+1)∏p
k=1 sin2(λk)

}])
,

(3.4.10c)

Gpq
eff =

κ2
4

8π
e2αT

(
1 +

1

3η2

[
1 + (1− η2)

{
q∑
j=1

cot2(λj)∏j−1
k=1 sin2(λk)

− 1∏q
k=1 sin2(λk)

}])
,

(3.4.10d)

where m 6= n 6= T , and m < n. In all cases, the “1” in the outermost brackets arises

from graviton exchange, while the remaining terms come from the exchange of scalar

quanta.

By considering the formation of the Sagittarius tidal streams, Kesden and Kamion-

kowski [79] have placed limits on the relative strengths of gravitational interaction
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between dark matter and normal matter. The constraint is roughly∣∣∣∣ GM−DM√
GM−MGDM−DM

− 1

∣∣∣∣ . 0.02 (3.4.11)

where “M” indicates matter, and “DM” indicates dark matter. If we assume that

all the dark matter lives on branes other than the central brane, we can calculate

the constraints on our model that this provides, finding that η & 0.8. This disagrees

with the constraint (3.4.5), which implies η . 6× 10−3. Thus, this model is unable to

explain dark matter by positing the existence of matter fields on other branes1.

We next consider the possibility that some fraction of the dark matter lives on

our (central) brane, and some fraction lives on other branes. We can then calculate

the percentage of dark matter which must reside on the central brane in order to be

compatible with the observational constraints (3.4.5) and (3.4.11). On average, a mass

M of dark matter will be composed of a mass αM on our brane, say, and (1− α)M

on other branes. The effective matter to dark matter coupling strengths will then be

GMM
eff = GTT

eff (3.4.12a)

GDD
eff = GTT

eff α
2 +Gnn

eff (1− α)2 +GTn
eff α(1− α) (3.4.12b)

GMD
eff = GTT

eff α +GTn
eff (1− α). (3.4.12c)

For simplicity, we use

Gnn
eff = Gmn

eff ∼
κ2

4

8π
e2αT

(
1 +

1

3η2

)
(3.4.13)

as the “off-brane to off-brane” coupling strength. Combining values for GTT
eff , G

Tn
eff and

Gnn
eff with Eqs. (3.4.12) in the constraint (3.4.11) and using η2 ∼ 3.5× 10−5, we find

α & 0.998, indicating that the vast majority of the dark matter must reside on our

brane in this simplified model.

1Note, however, that if the radion fields are stabilized, then it is possible to
circumvent this restriction. As such, we can only rule out braneworld models with
no moduli stabilization as an explanation for the observed weak interaction strength
between dark matter and normal matter.
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3.5 Discussion

This completes our analysis of the observational constraints for a general uncom-

pactified five-dimensional braneworld model with arbitrary numbers of branes and

without a radion stabilization mechanism, in the low-energy four-dimensional regime.

The parameter space of such models was restricted by excluding ghost modes, and

the phenomenology of the resulting models was analyzed. For such models to be

viable, there is only one brane upon which Standard Model fields may reside, and

such a configuration was unable to provide any benefit for the hierarchy problem,

nor a natural explanation for the weakness of the coupling between normal matter

and dark matter by sequestration. The Kaluza-Klein modes in such a model behave

very similarly to the original RS-II model. Our model was not found to be ruled out

experimentally, although observational constraints on the change in the value of GN

between nucleosynthesis and today may do so.

The methodology discussed in these chapters is also applicable to orbifolded models.

In Appendix B, we show that the low-energy theory for orbifolded models is very

similar to that for the uncompactified model discussed here. In Appendix C, we

discuss the spectrum of Kaluza-Klein modes in both orbifolded and uncompactified

multibrane models.

Overall, we found that models with N branes are quantitatively very similar to the

two-brane case. Furthermore, uncompactified and orbifolded models were also found

to be very similar, giving rise to identical four-dimensional low-energy theories, after

a scaling of parameters.
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I Evalulation

Our approach to analyzing the five-dimensional model and obtaining a four-dimensional

effective theory is straightforward and versatile. The general approach of a two-

lengthscale expansion is applicable to actions involving different contributions, such

as induced gravity on branes (for example, the DPG model [5]) and Gauss-Bonnet

curvature terms in the bulk. However, to acquire the four-dimensional effective theory

for such models would require performing the analysis of the previous chapter again,

in particular, identifying the leading order contributions to the equations of motion.

Braneworld models such as the ones we have analyzed are often complemented

by a radion stabilization mechanism. Radion stabilization is particularly useful

in circumventing the observational constraints that we calculated here, as massive

radion modes will be subject to Yukawa suppression and thus will have suppressed

contributions to deviations in γ. A radion stabilization mechanism may be implemented

in the model explicitly by including it in the action, and the new model analyzed in

the two-lengthscale expansion. In the case where a bulk scalar field is used [45, 46],

we expect interactions between the radion modes and the scalar field to give rise to

nontrivial dynamics. On the other hand, if radion stabilization is implemented by

hand, such as by giving masses to the ψn fields in Eq. (2.8.15) (corresponding to fixing

the distance between successive branes), then our analysis will proceed unchanged,

although our calculations of the observational constraints will not apply.

The approach of using a two-lengthscale expansion has been demonstrated to be a

useful method for understanding the low-energy theory of braneworld models, as we

have shown here in the case of simple N -brane models in a five-dimensional bulk. We

hope that others find the method applicable to a broad range of models.

Part of the motivation for investigating these models was to evaluate if any possible

explanations for dark energy could arise from this manner of construction. As all of
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the radion modes turn out to be massless scalar fields, they are unfortunately not

useful for dark energy models. A possible modification to the models which might

give rise to the desired behavior would be to more closely investigate detuned branes,

which naturally give rise to effective four-dimensional cosmological constants, as well

as potentials for the radion modes. However, the dynamics associated with such a

detuning can easily violate the separation of lengthscales argument upon which this

method is based, and so alternative analysis techniques would be required.

Having concentrated on analyzing a specific class of models for two chapters, we

now change gears and look at dark energy models with a more general approach.

Later, we will meet the two approaches in the middle.
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Chapter 4

A Class of Effective Field

Theory Models of Cosmic

Acceleration
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We now turn to a rather different approach to dark energy models. Instead of

investigating individual models, here we construct an effective field theory model of

dark energy, with the aim of being as generic and all-encompassing as possible. We

pay close attention to the regime of validity of the effective field theory, and find that

such an approach isn’t as all-encompassing as we had hoped.

This chapter is based on work originally presented in [3].
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4.1 Introduction

The accelerated expansion of the universe, to our current observations, appears to

be progressing in a homogeneous and isotropic manner on the largest scales. Should

this expansion be due to something other than a cosmological constant, then it can

typically be attributed to an effective scalar mode, so that the expansion has no

directional preference such as would be associated with modes of other spins.

If dark energy has a dynamical microphysical origin, then it would represent a

modification to gravity on extreme infrared scales. However, it is important not to

modify gravity on scales in which gravity has been stringently tested, namely solar

system scales down to sub-millimetre scales. Gravity is eventually expected to differ

from general relativity on length-scales smaller than this, at the Planck scale, if not

before. However, deviations at small scales are unable to contribute to the expansion

of the universe.

A famous theorem due to Weinberg [28] shows that the self-interactions of a

Lorentz-invariant massless spin-two field are equivalent to general relativity in the

low-energy limit, and so any modifications of gravity perforce require the addition of

new degrees of freedom. It is therefore little surprise that a common feature of the

majority of dark energy and modified gravity models is that in the low-energy limit,

they are equivalent to general relativity coupled to one or more scalar fields, often

called quintessence fields.

It is thus useful to try to construct very general low-energy effective quantum

field theories of general relativity coupled to light scalar fields, in order to encompass

broad classes of dark energy models. Considering dark energy models as quantum

field theories is useful, even though the dynamics of dark energy is likely in a classical

regime, because it facilitates discriminating against theories which are theoretically
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inconsistent or require fine tuning.

I Previous Work

A similar situation occurs in the study of models of inflation, where it is useful to

construct generic theories using effective field theory. Cheung et al. [80] constructed a

general effective field theory for gravity and a single inflaton field, for perturbations

about a background FRW cosmology in unitary gauge. This work was later generalized

in multiple directions [81, 82] and has been very useful. An alternative approach

to single field inflationary models was taken by Weinberg [83], who constructed an

effective field theory to describe both the background cosmology and the perturbations.

This theory consisted at leading order of a standard single field inflationary model

with a potential, together with higher-order terms in a covariant derivative expansion

up to four derivatives. More detailed discussions of this type of effective field theory

were given by Burgess, Lee and Trott [84].

When one turns from inflationary effective field theories to quintessence effective

field theories, the essential physics is very similar, but there are three important

differences that arise:

• First, the hierarchy of scales is vastly more extreme in quintessence models. The

Hubble parameter H is typically several orders of magnitude below the Planck

scale mP ∼ 1028 eV in inflationary models, whereas for quintessence models

H0 ∼ 10−33 eV is ∼ 60 orders of magnitude below the Planck scale. Quintessence

fields must have a mass that is smaller than or on the order of H0. It is a

well-known, generic challenge for quintessence models to ensure that loop effects

do not give rise to a mass much larger than H0. Because of the disparity of scales,

this issue is more extreme for quintessence models than inflationary models.

• In most inflationary models, it is assumed that the dynamics of the Universe are
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dominated by gravity and the scalar field (at least until reheating). By contrast,

for quintessence models in the regime of low redshifts relevant to observations,

we know that cold dark matter gives an O(1) contribution to the energy density.

Therefore there are additional possible couplings and terms that must be included

in an effective field theory.

• For any effective field theory, it is possible to pass outside the domain of validity of

the theory even at energies E low compared to the theory’s cutoff Λ, if the mode

occupation numbers N are sufficiently large (see Section 4.5.II below for more

details). This corresponds to a breakdown of the classical derivative expansion.

For quintessence theories, mode occupation numbers today can be as large as

N ∼ (mP/H0)
2 and it is possible to pass outside the domain of validity of the

theory. By contrast in inflationary models, this is less likely to occur since mode

occupation numbers for the perturbations are not large before modes exit the

horizon. Thus, the effective field theory framework is less all-encompassing for

quintessence models than for inflation models. This issue seems not to have been

appreciated in the literature and we discuss it in Section 4.5.II below.

Several studies have been made of generic effective field theories of dark energy.

Creminelli, D’Amico, Noreña and Vernizzi [85] constructed a the general effective

theory of single-field quintessence for perturbations about an arbitrary FRW back-

ground, paralleling the similar construction for inflation [80]. Park, Watson and Zurek

constructed an effective theory for describing both the background cosmology and the

perturbations, following the approach of Weinberg [83] but generalizing it to include

couplings to matter [86].

The two approaches to effective field theories of quintessence – specialization to

perturbations about a specific background, and maintaining covariance and the ability

to describe the dynamics of a variety of backgrounds – are complementary to one
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another. The dynamics of the cosmological background FRW solution can be addressed

in the covariant approach of Weinberg, but not in the background specific approach

of Creminelli et al., which restricts attention to the dynamics of perturbations about

a given, fixed background. On the other hand, a background specific approach can

describe a larger set of dynamical theories for the perturbations than can a covariant

derivative expansion1.

II Approach

In this chapter, we revisit, generalize and correct slightly the covariant effective field

theory analysis of Park, Watson and Zurek [86]. Following Weinberg and Park et al.,

we restrict attention to theories where the only dynamical degrees of freedom are a

graviton and a single scalar. We allow couplings to an arbitrary matter sector, but

we assume the validity of the weak equivalence principle, motivated by the strong

experimental evidence for this principle. We assume that the theory consists of

a standard quintessence theory coupled to matter at leading order in a derivative

expansion, with an action of the form

S[gαβ, φ, ψm] =

∫
d4x
√
−g
{
m2
P

2
R− 1

2
(∇φ)2 − U(φ)

}
+ Sm

[
eα(φ)gµν , ψm

]
. (4.1.1)

Here ψm denotes a set of matter fields, and mP is the Planck mass. The factor eα(φ) in

the matter action provides a leading-order non-minimal coupling of the quintessence

field to matter, in a manner similar to Brans-Dicke models in the Einstein frame

[87, 88].

Our analysis then consists of a series of steps:

1To see this, consider for example a term in the Lagrangian of the form f(φ)(∇φ)2n,
where φ is the quintessence field. Such a term would be omitted in the covariant
derivative expansion for sufficiently large n. However, upon expanding this term using
φ = φ0 + δφ, where φ0 is the background solution, one finds terms ∼ (∇φ0)2n−2(∇δφ)2

which are included in the Creminelli approach of applying standard effective field
theory methods to the perturbations.
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1. We add to the action all possible terms involving the scalar field and metric,

in a covariant derivative expansion up to four derivatives. We truncate the

expansion at four derivatives, as this is sufficient to yield the leading corrections

to the action (4.1.1). As described by Weinberg [83] there are ten possible terms,

with coefficients that can be arbitrary functions of φ [see Eq. (4.2.3) below].

Section 4.5.I below describes one possible justification of this covariant derivative

expansion from an effective field theory viewpoint, starting from a set of ultralight

pseudo-Nambu-Goldstone bosons (pNGBs). It is likely that the same expansion

can be obtained from other, more general starting points.

2. We allow for corrections to the coupling to matter by adding to the metric that

appears in the matter action all possible terms involving the metric and φ allowed

by the derivative expansion, that is, up to two derivatives. There are six such

terms [see Eq. (4.2.4) below.] We also add to the action terms involving the stress

energy tensor Tµν of the matter fields, up to the order allowed by the derivative

expansion using Tµν ∼ m2
PGµν [see Eq. (4.2.3) below]. Including such terms in

the action seems poorly motivated, since a priori there is no reason to expect

that the resulting theory would respect the weak equivalence principle. However,

we show in Appendix D that the weak equivalence principle is actually satisfied,

to the order we are working to in the derivative expansion. In addition, all the

terms in the action involving Tµν can be shown to have equivalent representations

not involving the stress energy tensor, using field redefinitions (see Appendix D).

3. The various correction terms are not all independent because of the freedom

to perform field redefinitions involving φ, gµν and the matter fields, again in a

derivative expansion. In Section 4.3 we explore the space of such field redefinitions,

finding eleven independent transformations and tabulating their effects on the

coefficients in the action (see Table 1 below).

4. Several of the correction terms that are obtained from the derivative expansion
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are “higher-derivative” terms, by which we mean that they give contributions to

the equations of motion which involve third- or higher-order time derivatives of

the fields2. Normally, such higher-derivative terms give rise to additional degrees

of freedom. However, if they are treated perturbatively (consistent with our

derivative expansion) additional degrees of freedom do not arise. Specifically, one

can perform a reduction of order procedure on the equations of motion [90, 91, 92],

substituting the zeroth-order equations of motion into the higher derivative terms

in the equations of motion to eliminate the higher derivatives3. We actually use

a slightly different but equivalent procedure of eliminating the higher derivative

terms directly in the action using field redefinitions4 (see Appendix E).

Weinberg [83] and Park et al. [86] use a slightly different method, consisting

of substituting the leading order equations of motion directly into the higher

derivative terms in the action. This method is not generally valid, but it is valid

up to field redefinitions that do not involve higher derivatives, and so it suffices

for the purpose of attempting to classify general theories of dark energy (see

Appendix E).

5. Another issue that arises with respect to the higher derivative terms is the

following. Is it really necessary to include such terms in an action when trying to

2The precise definition of higher-derivative that we use, which is covariant, is that
an equation will be said not to contain any higher-derivative terms if there exists a
choice of foliation of spacetime for which any third-order or higher-order derivatives
contain at most two time derivatives. Theories which are higher-derivative in this sense
are generically associated with instabilities (Ostragradski’s theorem) [89], although
the instabilities can be evaded in special cases, for example f(R) gravity. For most of
this work (except for the Chern-Simons term), a simpler definition of higher-derivative
would be sufficient: a term in the action is “higher-derivative” if it gives rise to terms
in the equation of motion that involve any third- or higher-order derivatives.

3This is more general than requiring the solutions of the equation of motion to be
analytic in the expansion parameter, as advocated by Simon [93]; see Ref. [92].

4This procedure is counterintuitive since normally field redefinitions do not change
the physical content of a theory; here however they do because the field redefinitions
themselves involve higher derivatives.
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write down the most general theory of gravity and a scalar field, in a derivative

expansion? Weinberg [83] suggested that perhaps a more general class of theories is

generated by including these terms and performing a reduction of order procedure

on them, rather than by omitting them. However, since it is ultimately possible to

obtain a theory that is perturbatively equivalent to the higher-derivative theory,

and which has second-order equations of motion, it should be possible just to

write down the action for this reduced theory. In other words, an equivalent class

of theories should be obtained simply by omitting all the higher-derivative terms

from the start. We show explicitly in Section 4.4 that this is the case for the

class of theories considered here.

6. We fix the remaining field redefinition freedom by choosing a “gauge” in field

space, thus fixing the action uniquely (see Section 4.4.II).

III Results and Implications

Our final action is [Eq. (4.4.5) below]

S =

∫
d4x
√
−g
{
m2
P

2
R− 1

2
(∇φ)2 − U(φ)

}
+ Sm[eα(φ)gαβ, ψm]

+ ε

∫
d4x
√
−g
{
a1(∇φ)4 + b2T (∇φ)2 + c1G

µν∇µφ∇νφ

+ d3

(
R2 − 4RµνRµν +RµνσρR

µνσρ
)

+ d4ε
µνλρC αβ

µν Cλραβ

+ e1T
µνTµν + e2T

2 + . . .

}
. (4.1.2)

Here the coefficients a1, b2 etc. of the next-to-leading order terms in the derivative

expansion are arbitrary functions of φ, and the ellipsis . . . refers to higher-order terms

with more than four derivatives. The corresponding equations of motion do not contain

any higher derivative terms. This result generalizes that of Weinberg [83] to include

couplings to matter.

We can summarize our key results as follows:
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Figure 9: The parameter space of fractional density perturbation δρ/ρ for perturba-
tions to the quintessence field, and cutoff scale M for the effective field
theory, illustrating the constraint (4.1.3) on the domain of validity. Near
the boundary of the domain of validity the higher derivative terms in the
action are potentially observable, this is labeled the “interesting regime”.
Further away from the boundary the higher derivative terms are negligible
and the theory reduces to a standard quintessence model with a matter
coupling.

• The most general action contains nine free functions of φ: U , α, a1, b2, c1, d3,

d4, e1, e2, as compared to the four functions that are needed when matter is not

present [83].

• There are a variety of different forms of the final theory that can be obtained

using field redefinitions. In particular some of the matter-coupling terms in

the action can be re-expressed as terms that involve only the quintessence field

and metric. Specifically, the term T (∇φ)2 term could be eliminated in favor

of �φ(∇φ)2, the (∇φ)4 could be eliminated in favor of a term T µν∇µφ∇νφ, or

the Gµν∇µφ∇νφ term could be eliminated in favor of a term T µν∇µφ∇νφ (see

Section 4.4.II).

• As mentioned above, one obtains the correct final action if one excludes throughout

the calculation all higher-derivative terms.

• The final theory does contain terms involving the matter stress-energy tensor.
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Nevertheless, the weak equivalence principle is still satisfied (see Appendix D).

It is possible to eliminate the stress-energy terms, but only if we allow higher

derivative terms in the action (where it is assumed that the reduction of order

procedure will be applied to these higher derivative terms). Thus, for a fully

general theory, one must have either stress-energy terms or higher derivative

terms; one cannot eliminate both (see Section 4.4.II).

• We can estimate how all the coefficients a1 etc. scale with respect to a cutoff

scale M for an effective field theory as follows (see Section 4.5.I). We assume that

several ultralight scalar fields of mass ∼ H0 arise as pseudo-Nambu-Goldstone

bosons from some high-energy theory [94, 95], and are described by a nonlinear

sigma model at low energies. We then suppose that all but one of the these

pNGB fields have masses M that are somewhat larger than ∼ H0, and integrate

them out. This will give rise to a theory of the form discussed above for the

single light scalar, where the higher derivative terms are suppressed by powers

of M . The scalings for each of the coefficients in the action are summarized in

Table 3. We find that the fractional corrections to the cosmological dynamics

due to the higher derivative terms scale as H2
0/M

2, as one would expect.

• Finally, we can use these scalings to estimate the domain of validity of the effective

field theory (see Section 4.5.II). We find that cosmological perturbations with a

density perturbation δρ in the quintessence field must have a fractional density

perturbation that satisfies

δρ

ρ
� M2

H2
0

. (4.1.3)

Thus perturbations can become nonlinear, but only modestly so, if M is close

to H0. The parameter space of fractional density perturbation δρ/ρ and cutoff

scale M is illustrated in Fig. 9. In addition there is the standard constraint for
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Figure 10: The domain of validity of the effective field theory in the two dimensional
parameter space of energy E per quantum of a mode of the quintessence
field, and mode occupation number N . The cutoff scale M must be larger
than the Hubble parameter H0 in order that the background cosmology
lie within the domain of validity. Perturbation modes on length-scales
that are small compared to H−1

0 but large compared to M−1 can be
described, but only if the mode occupation number and fractional density
perturbation are sufficiently small. See Section 4.5.II for details.

derivative expansions

E �M (4.1.4)

where E−1 is the length-scale or time-scale for some process. We show in Fig. 10

the two constraints (4.1.3) and (4.1.4) on the two dimensional parameter space

of energy E and mode occupation number N .

Finally, in Appendix F we compare our analysis to that of Park, Watson and Zurek

[86], who perform a similar computation but in the Jordan frame rather than the

Einstein frame (see also Ref. [96]). The main difference between our analysis and

theirs is that they use a different method to estimate the scalings of the coefficients,
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and as a result their final action differs from ours, being parameterized by three free

functions rather than nine.

4.2 Class of Theories Involving Gravity and a Scalar Field

As discussed in the introduction, our starting point is an action for a standard

quintessence model with an arbitrary matter coupling, together with a perturbative

correction which consists of a general derivative expansion up to four derivatives. The

action is a functional of the Einstein-frame metric gαβ, the quintessence field φ, and

some matter fields which we denote collectively by ψm:

S[gαβ, φ, ψm] = S0[gαβ, φ] + εS1[gαβ, φ, Tαβ(ψm)] + Sm[ḡαβ, ψm] +O(ε2). (4.2.1)

Here Sm is the action for the matter fields, and the quantity ε is a formal expansion

parameter. We will see in Section 4.5.I below that ε can be identified as proportional to

M−2, where M is a cutoff scale or the mass of the lightest of the fields that have been

integrated out to obtain the low-energy action. Equivalently, ε counts the number of

derivatives in our derivative expansion, with εn corresponding to 2(n+ 1) derivatives.

The notation in the second term indicates that the perturbative correction S1 to the

action can depend on the matter fields, but only through their stress energy tensor

Tαβ (as defined in the Preface). Explicitly we have

S0 =

∫
d4x
√
−g
[
m2
P

2
R− 1

2
(∇φ)2 − U(φ)

]
, (4.2.2)
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and [83, 86]

S1 =

∫
d4x
√
−g
{
a1(∇φ)4 + a2�φ(∇φ)2 + a3(�φ)2 + b1T

µν∇µφ∇νφ

+ b2T (∇φ)2 + b3T�φ+ b4T
µν∇µ∇νφ+ b5RµνT

µν

+ b6RT + b7T + c1G
µν∇µφ∇νφ+ c2R(∇φ)2 + c3R�φ

+ d1R
2 + d2R

µνRµν + d3

(
R2 − 4RµνRµν +RµνσρR

µνσρ
)

+ d4ε
µνλρC αβ

µν Cλραβ + e1T
µνTµν + e2T

2

}
. (4.2.3)

Here Cµνλρ is the Weyl tensor and εµνλρ is the antisymmetric tensor (our conventions

for these are given in the Preface). There are additional terms with four derivatives

that one can write down, but all such terms can be eliminated by integration by parts.

Finally, the metric ḡµν which appears in the matter action Sm in Eq. (4.2.1) is given

by5

ḡµν = eαgµν + εeα
[
β1∇µφ∇νφ+ β2(∇φ)2gµν + β3�φgµν

+ β4∇µ∇νφ+ β5Rµν + β6Rgµν
]

+O(ε2). (4.2.4)

All of the coefficients ai, bi, ci, di, ei, βi and α are arbitrary functions of φ.

Let us briefly discuss each of the perturbative terms. The terms with coefficients

ai are corrections to the kinetic term of the scalar field. The bi and βi terms are

couplings between the scalar field and the stress-energy tensor, or between curvature

and the stress-energy tensor. The ci terms are kinetic couplings between the scalar

field and gravity. The di terms are quadratic curvature terms, which we have chosen

to write as an R2 term, an RµνR
µν term, and the Gauss-Bonnet term. Any constant

piece of the coefficient d3 is a topological term and may be omitted. The term d4

is the gravitational Chern-Simons term, which may be excluded if one wishes to

5We call this metric the Jordan frame metric, in an extension of the usual termi-
nology which applies to the case when the relation (4.2.4) between the two metrics is
just a conformal transformation.
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introduce parity as a symmetry of the theory, and again, any constant component

of d4 is topological and may be omitted. Finally, the ei terms are quadratic in the

stress-energy tensor.

Note that several of the terms in the action (4.2.3) are “higher derivative” terms,

that is, they give rise to contributions to the equations of motion containing derivatives

of order three or higher. The specific terms are those parameterized by the coefficients

a3, b3, . . . , b6, c2, c3, d1, d2 and β3, . . . , β6. As discussed in the introduction and in

Appendix E, we will choose to define our theory by treating these terms perturbatively,

which excludes the extra degrees of freedom and instabilities that are normally

associated with higher derivative terms.

We also note that the theory (4.2.1) satisfies the weak equivalence principle, to

linear order in ε, as we show in Appendix D. That is, objects with negligible self-

gravity with different compositions all experience the same acceleration. It is not a

priori obvious that the principle should be satisfied since, as we show in Appendix D,

violations of the principle generically arise whenever the matter stress energy tensor

appears explicitly in the gravitational action, as in Eq. (4.2.1).

4.3 Transformation Properties of the Action

The description of the theory provided by Eqs. (4.2.1) – (4.2.4) is very redundant,

in part because of the freedom to perform field redefinitions. In this section we

derive how the various coefficients in the action (4.2.1) are modified under various

transformations. In the next section we will use these transformation laws to derive a

canonical representation of the theory, involving only nine free functions.
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I Expansion of the Matter Action

Consider first the perturbative terms parameterized by β1, . . . , β6, in the definition

(4.2.4) of the Jordan metric ḡαβ, which appears in the matter action Sm[ḡαβ, ψm].

Using the definition (0.0.2) of the stress-energy tensor, we can eliminate these terms in

favor of terms in the action involving Tαβ. Specifically we have from Eq. (0.0.2) that

Sm[eα(gµν + δgµν), ψm] = Sm[eαgµν , ψm] +
1

2

∫
d4x
√
−ge2αT µνδgµν +O(δg2).

(4.3.1)

Choosing

δgµν = ε[β̃1∇µφ∇νφ+ β̃2(∇φ)2gµν + β̃3�φgµν + β̃4∇µ∇νφ+ β̃5Rµν + β̃6Rgµν ]

(4.3.2)

then gives a transformation of the action (4.2.1) characterized by the following changes

in the coefficients:

δβ1 = −β̃1, δb1 = 1
2
e2αβ̃1,

δβ2 = −β̃2, δb2 = 1
2
e2αβ̃2,

δβ3 = −β̃3, δb3 = 1
2
e2αβ̃3,

δβ4 = −β̃4, δb4 = 1
2
e2αβ̃4,

δβ5 = −β̃5, δb5 = 1
2
e2αβ̃5,

δβ6 = −β̃6, δb6 = 1
2
e2αβ̃6.

(4.3.3)

Here the parameters β̃i can be arbitrary functions of φ. Similarly choosing δgµν = εα̃gµν

gives a transformation characterized by

δα = −εα̃, δb7 = 1
2
e2αα̃. (4.3.4)

II Field Redefinitions Involving just the Scalar Field

Consider a perturbative field redefinition of the form

φ = ψ + εγ, (4.3.5)
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where the quantity γ can in general depend on any of the fields and their derivatives.

To leading order in ε, the change in the action (4.2.1) is then proportional to the

zeroth-order equation of motion (4.5.10b) for φ. Relabeling ψ as φ, the change induced

in the action is

δS = ε

∫
d4x
√
−gγ

[
�φ− U ′ + 1

2
e2αα′T

]
. (4.3.6)

There are three special cases that will be useful:

1. First, choose

φ = ψ + εσ1T, (4.3.7)

where σ1 is an arbitrary function6 of ψ, and T is the trace of the stress-energy

tensor. Substituting this into Eq. (4.3.6) and comparing with the general action

(4.2.3), we find the following transformation law for the coefficients:

δb3 = σ1, δb7 = −U ′σ1,

δe2 =
1

2
α′e2ασ1. (4.3.8)

2. Second, we use the field redefinition

φ = ψ + εσ2[�ψ + U ′(ψ)]. (4.3.9)

Here the second term in the square bracket is included in order to maintain

canonical normalization of the scalar field, that is, to avoid generating terms in

the action of the form f(φ)(∇φ)2. The resulting transformation law is

δa3 = σ2, δb3 =
1

2
e2αα′σ2,

δb7 =
1

2
α′e2αU ′σ2, δU = ε(U ′)2σ2. (4.3.10)

6Because we are working to linear order in ε, it does not matter whether we take
σ1 to be a function of φ or of ψ.

104



3. Third, consider the field redefinition

φ = ψ + εσ3 − ε
1

U ′
σ′3(∇ψ)2, (4.3.11)

where σ3 is a function of ψ and again the particular combination of terms

is chosen to maintain canonical normalization. Substituting into Eq. (4.3.6),

performing some integrations by parts and comparing with Eq. (4.2.3) gives the

transformation law

δa2 = −σ
′
3

U ′
, δb2 = − 1

2U ′
e2αα′σ′3,

δb7 =
1

2
e2αα′σ3, δU = εU ′σ3. (4.3.12)

Note that this transformation is not well defined in general in the limit U ′ → 0,

because of the factors of 1/U ′. However, it is well defined in the limit U ′ → 0,

σ′3 → 0 with σ′3/U
′ kept constant.

III Field Redefinitions Involving the Metric

We now consider a more general class of field redefinitions, where in addition to

redefining the scalar field via Eq. (4.3.5), we also perturbatively redefine the metric

via

gαβ = ĝαβ + εFαβ. (4.3.13)

Here the quantity Fαβ can depend on ψ, ĝαβ, their derivatives and the stress energy

tensor. The corresponding change in the action is proportional to the equation of

motion (4.5.10a). Relabeling ĝαβ as gαβ and ψ as φ, the total change in the action is

δS =
ε

2

∫
d4x
√
−gFαβ

[
−m2

PG
αβ +∇αφ∇βφ− 1

2
(∇φ)2gαβ − Ugαβ + e2αTαβ

]
+ ε

∫
d4x
√
−gγ

[
�φ− U ′ + 1

2
e2αα′T

]
. (4.3.14)
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Coeff. Term σ1 σ2 σ3 σ4 σ5 σ6 σ7 σ8 σ9 σ10 σ11

a1 (∇φ)4 ? ? ?
a2 �φ(∇φ)2 ? ? ?
a3 † (�φ)2 ?
b1 T µν∇µφ∇νφ ? ?
b2 T (∇φ)2 ? ? ? ?
b3 † T�φ ? ? ?
b4 † T µν∇µ∇νφ ?
b5 † RµνTµν ? ?
b6 † RT ? ? ?
b7 T ? ? ? ? ? ? ? ? ? ? ?
c1 Gµν∇µφ∇νφ ? ? ?
c2 † R(∇φ)2 ? ?
c3 † R�φ ?
d1 † R2 ? ?
d2 † RµνRµν ?
d3 Gauss-Bonnet
d4 Chern-Simons
e1 T µνTµν ?
e2 T 2 ? ?

U (potential) ? ? ? ? ? ? ? ?

Table 1: This table shows which of the terms in our action (4.2.2) are affected by
each of the eleven field redefinitions (4.3.7) – (4.3.29) that are parameterized
by the functions σ1(φ), . . . , σ11(φ). The columns represent the redefinitions,
and the rows represent terms. Daggers † in first column indicate “higher
derivative” terms, that is, terms that give contributions to the equations
of motion containing derivatives of higher than second-order. Stars ?
indicate that the coefficient of that row’s term is altered by that column’s
field redefinition. We omit the coefficients α and β1, . . . , β6 since those
coefficients are degenerate with b1, . . . , b7 by Eqs. (4.3.3) and (4.3.4).
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Note that this formula includes the effect of the change in the Jordan frame met-

ric (4.2.4) caused by the transformation (4.3.13). We now consider seven different

transformations of this type:

4. The first case is a change to the metric proportional to Rgαβ. In order to maintain

canonical normalization of both the metric and the scalar field, that is, to avoid

terms of the form f(φ)(∇φ)2 and f(φ)R, we need the following combination of

terms in the field redefinition:

gαβ = ĝαβ − 2εσ′4

(
m2
P

U
R̂ + 4

)
ĝαβ, (4.3.15a)

φ = ψ + 4εσ4, (4.3.15b)

for some function σ4(ψ). Substituting into Eq. (4.3.14), performing some integra-

tions by parts and comparing with Eq. (4.2.3) we obtain for the transformation

law

δb7 = 2e2αα′σ4 − 4e2ασ′4, δc2 =
m2
P

U
σ′4,

δd1 = −m
4
P

U
σ′4, δb6 = −e

2α

U
m2
Pσ
′
4,

δU = 4ε [U ′σ4 − 4Uσ′4] . (4.3.16)

5. Next consider changes to the metric proportional to Rαβ. In order to maintain

canonical normalizations we use the following combination of terms in the field

redefinition:

gαβ = ĝαβ(1− 2εσ′5)− 2ε
m2
P

U
σ′5R̂αβ, (4.3.17a)

φ = ψ + εσ5, (4.3.17b)
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for some function σ5(ψ). This gives the transformation law

δb7 =
1

2
e2αα′σ5 − e2ασ′5, δc1 = −m

2
P

U
σ′5,

δd1 = −m
4
P

2U
σ′5, δd2 =

m4
P

U
σ′5,

δb5 = −m
2
P

U
e2ασ′5, δU = ε [U ′σ5 − 4Uσ′5] . (4.3.18)

6. The next case is a change to the metric proportional to (∇φ)2gαβ. To maintain

canonical normalization of the scalar field, we need in addition a change to the

scalar field, with the combined transformation being

gαβ = ĝαβ − 2ε
σ′6
U

(∇̂ψ)2ĝαβ, (4.3.19a)

φ = ψ + 4εσ6, (4.3.19b)

for some function σ6. The resulting transformation law for the coefficients is

δa1 =
σ′6
U
, δb2 = −e2ασ

′
6

U
,

δb7 = 2e2αα′σ6, δc2 = −σ′6
m2
P

U
,

δU = 4εU ′σ6. (4.3.20)

7. Next consider changes to the metric proportional to �φgαβ. The required form

of field redefinition that preserves canonical normalization of φ is

gαβ = ĝαβ + 2εσ7�̂ψĝαβ, (4.3.21a)

φ = ψ + 4εUσ7, (4.3.21b)

for some function σ7. The coefficients in the action then change according to

δa2 = −σ7, δb3 = e2ασ7,

δb7 = 2e2αα′Uσ7, δc3 = m2
Pσ7,

δU = 4εUU ′σ7. (4.3.22)
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8. The fifth case is a change to the metric proportional to ∇αφ∇βφ. The required

form of field redefinition that preserves canonical normalization of φ is

gαβ = ĝαβ − 2ε
σ′8
U
∇̂αψ∇̂βψ, (4.3.23a)

φ = ψ + εσ8, (4.3.23b)

for some function σ8. The coefficients in the action then change according to

δa1 = − σ
′
8

2U
, δb1 = −e2ασ

′
8

U
,

δb7 =
1

2
e2αα′σ8, δc1 =

m2
P

U
σ′8,

δU = εU ′σ8. (4.3.24)

9. Next consider a change in the metric proportional to ∇α∇βφ. To preserve

canonical normalization of φ we use the redefinitions

gαβ = ĝαβ + 2εσ9∇̂α∇̂βψ, (4.3.25a)

φ = ψ + εUσ9, (4.3.25b)

for some function σ8. The coefficients in the action then change according to

δa1 = −1

2
σ′9, δa2 = −σ9,

δb4 = e2ασ9, δb7 =
1

2
e2αα′Uσ9,

δc1 = m2
Pσ
′
9, δU = εUU ′σ9. (4.3.26)

10. A simple case is when the change in the metric is proportional to Tgαβ, for which

no change to the scalar field is required. The redefinition is

gαβ = ĝαβ + 2εσ10T ĝαβ, (4.3.27)

for some function σ10. The transformation law for the coefficients is

δb2 = −σ10, δb7 = −4σ10U,

δe2 = e2ασ10, δb6 = m2
Pσ10. (4.3.28)
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11. Similarly, no transformation to the scalar is required for the case of a change in

the metric proportional to Tαβ. The redefinition is

gαβ = ĝαβ + 2εσ11Tαβ, (4.3.29)

for some function σ11, and the corresponding transformation law is

δb1 = σ11, δb2 = −1

2
σ11,

δb7 = −σ11U, δe1 = e2ασ11,

δb5 = −m2
Pσ11, δb6 =

1

2
m2
Pσ11. (4.3.30)

The eleven7 field redefinitions (4.3.7) – (4.3.29) are summarized in Table 1, which

shows which coefficients are modified by which transformations.

4.4 Canonical Form of Action

In this section, we derive our final, reduced action (4.1.2) from the starting action

(4.2.1), using the transformation laws derived in Section 4.3. There is some freedom in

which terms we choose to eliminate and which terms we choose to retain. We choose

to eliminate all terms that give higher derivatives in the equations of motion, so that

the final theory is not a “higher derivative” theory. However, even after this has been

accomplished, there is still some freedom in how the final theory is represented. We

discuss this further in Section 4.4.II below. The order of operations in the derivation is

important, since we need to take care that terms which we have already set to zero are

not reintroduced by subsequent transformations. Table 2 summarizes our calculations

and their effects on the coefficients in the action at each stage in the computation.

7We could also consider a twelfth redefinition given by gαβ = ĝαβ(1 − 2εσ′12),

φ = ψ + εσ12 − εm2
Pσ
′
12R̂/U

′. However this redefinition is not independent of the first
eleven; the same effect can be achieved by choosing σ1 = −e2ασ′12/U

′, σ3 = −σ12,
σ7 = σ′12/U

′, σ10 = e2αα′σ′12/(2U
′).
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I Derivation

The steps in the derivation are as follows:

1. Elimination of Derivative Terms in the Jordan Frame Metric: The transformation

(4.3.3) can be used to eliminate all of the terms involving derivatives in the Jordan

frame metric (4.2.4), which are parameterized by the coefficients β1, . . . , β6. This

changes the coefficients of the terms in the action that depend linearly on the

stress energy tensor, namely b1, . . . , b6. As discussed in Appendix D, these terms

involving the stress-energy tensor look like they might violate the weak equivalence

principle, but in fact they do not.

2. Elimination of Higher Derivative, Quadratic in Curvature Terms: We next

consider the terms in the action that are quadratic functions of curvature, whose

coefficients are d1, d2, d3 and d4. The Chern-Simons term (d4) and the Gauss-

Bonnet term (d3) give rise to well behaved equations of motion (in the sense that

they not increase the number of degrees of freedom), so we do not attempt to

eliminate these terms. By contrast, the terms proportional to the squares of the

Ricci scalar and Ricci tensor, parameterized by d1 and d2, do increase the number

of degrees of freedom. We can eliminate these terms by using the transformations

(4.3.15) and (4.3.17), with parameters chosen to be

σ4 =

∫
dφ

U

m4
P

(d1 + d2/2), σ5 = −
∫
dφ

U

m4
P

d2. (4.4.1)

These transformations will then modify the coefficients b5, b6, b7, c1 and c2, as

well as the potential U (see Table 1).

3. Elimination of some of the Linear Stress-Energy Terms: We next turn to terms

which depend linearly on the stress-energy tensor, parameterized by b1, . . . , b6.

First, we can eliminate the term b4T
µν∇µ∇νφ by using the transformation (4.3.25)

with σ9 = −e−2αb4. This gives rise to changes in the coefficients a1, a2, b7, c1 as
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Step 1 2 3 3 4 5 6 6 7 Final

Transformation β̃j σ4, σ5 σ9 σ10, σ11 σ6, σ7 σ2, σ3 σ8 σ1 α̃

Coeff. Term in Action

a1 (∇φ)4 ? ? ? X
a2 �φ(∇φ)2 ? ? → 0 ◦
a3 † (�φ)2 → 0

b1 Tµν∇µφ∇νφ ? ? → 0 ◦
b2 T (∇φ)2 ? ? ? ? X
b3 † T�φ ? ? ? → 0

b4 † Tµν∇µ∇νφ ? → 0

b5 † RµνTµν ? ? → 0

b6 † RT ? ? → 0

b7 T ? ? ? ? ? ? ? → 0

c1 Gµν∇µφ∇νφ ? ? ? X
c2 † R(∇φ)2 ? → 0

c3 † R�φ → 0

d1 † R2 → 0

d2 † RµνRµν → 0

d3 Gauss-Bonnet X
d4 Chern-Simons X
e1 TµνTµν ? X
e2 T 2 ? ? X

U (potential) ? ? ? ? ? X
Coeff. Term in ḡµν
β1 ∇µφ∇νφ → 0

β2 (∇φ)2gµν → 0

β3 † �φgµν → 0

β4 † ∇µ∇νφ → 0

β5 † Rµν → 0

β6 † Rgµν → 0

α (conf. factor) ? X

Table 2: This table shows the progression of manipulations we make in this section.
The second column on the left lists the various terms in the action (4.2.3), or
in the Jordan-frame metric (4.2.4). The first column lists the corresponding
coefficients; daggers † indicate higher derivative terms. The numbers in
the first row along the top refer to the numbered steps in the derivation in
Section 4.4.I. The second row shows which transformation functions are used
in each step. In the table, a star ? indicates that the corresponding row’s
term receives a contribution from the corresponding column’s reduction
process, while → 0 indicates that the term has been eliminated. The check
marks X in the last column indicate the remaining terms that are non-zero
in the final action (4.4.5). Finally, circles ◦ in the last column indicate
terms that are nonzero in alternative forms of the final action obtained
using the transformations (4.3.11) or (4.3.23), as discussed in Section 4.4.II.
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well as to the potential U . Second, we can eliminate the terms parameterized by

b5 and b6 by using the transformations (4.3.27) and (4.3.29) with the parameters

σ10 = −(b6 + b5/2)/m2
P , σ11 = b5/m

2
P . This changes the coefficients b1, b2, b7, e1

and e2.

4. Elimination of Kinetic Coupling of the Scalar to Curvature: We next focus on the

terms which kinetically couple the scalar field to gravity, namely Gµν∇µφ∇νφ,

R(∇φ)2 and R�φ. The first of these does not produce higher derivative terms

in the equation of motion, so we focus on the remaining two terms, which

are parameterized by c2 and c3. These terms can be eliminated using the

transformations (4.3.19) and (4.3.21), with the parameters chosen to be

σ6 =

∫
dφ

U

m2
P

c2, σ7 = − c3

m2
P

. (4.4.2)

These transformations then give rise to changes in the coefficients a1, a2, b2, b3,

b7 as well as to the potential U .

5. Elimination of some of the Corrections to Scalar Field Kinetic Term: Our

action includes three corrections to the scalar kinetic term, parameterized by

a1, a2 and a3. Of these, only term a3 contributes higher-order derivatives to the

equations of motion. We eliminate this term, and also the term a2, by using the

transformations (4.3.9) and (4.3.11) with

σ2 = −a3, σ3 =

∫
dφU ′a2. (4.4.3)

This gives rise to corrections to the coefficients b2, b3 and b7 and to the potential

U .

6. Elimination of some Kinetic Couplings of the Scalar to Stress-Energy: We next

turn to the term b1T
µν∇µφ∇νφ. We can eliminate this using the transformation

(4.3.23) with the parameter choice

σ8 =

∫
dφ b1Ue

−2α. (4.4.4)
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This gives rise to changes in the coefficients a1, b7, c1 and U , from Table 1. We

can also eliminate the term b3T�φ by using the transformation (4.3.7) with

σ1 = −b3. This changes the coefficients e2 and b7.

7. Elimination of Trace of Stress-Energy Tensor Term: The last step is to re-express

the term b7T in terms of an O(ε) correction to the conformal factor eα by using

the transformation (4.3.4) with α̃ = −2e−2αb7.

II Canonical Form of Action and Discussion

Applying the parameter specializations derived above to the action (4.2.1) we arrive

at our final result:

S =

∫
d4x
√
−g
{
m2
P

2
R− 1

2
(∇φ)2 − U(φ)

}
+ Sm[eα(φ)gαβ, ψm]

+ ε

∫
d4x
√
−g
{
a1(∇φ)4 + b2T (∇φ)2 + c1G

µν∇µφ∇νφ+ e1T
µνTµν

+ d3

(
R2 − 4RµνRµν +RµνσρR

µνσρ
)

+ d4ε
µνλρC αβ

µν Cλραβ + e2T
2

}
. (4.4.5)

This action contains nine free functions of φ: U, α, a1, b2, c1, d3, d4, e1, e2. The corre-

sponding equations of motion do not contain any higher derivative terms and are

presented in Appendix G.

Our final result (4.4.5) can be re-expressed in a number of equivalent forms:

• First, the term b2T (∇φ)2 in the action can be eliminated in favor of a term

proportional to e2αβ2(∇φ)2gµν in the Jordan frame metric (4.2.4) using the

transformation (4.3.3). As discussed in Appendix D the latter representation

makes explicit that the weak equivalence principle is satisfied.

• The term b2T (∇φ)2 could also be eliminated in favor of a term a2�φ(∇φ)2,

using the transformation (4.3.11) parameterized by σ3, as long as α′ 6= 08. The

8More precisely the criterion is that the zeroth-order term in the expansion in α′
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dynamics of a scalar quintessence field with kinetic terms of the latter type have

recently been explored in detail in Ref. [97], who called the mixing of the scalar

and metric kinetic terms in the equations of motion “kinetic braiding”. The

representation of this term as a2�φ(∇φ)2 has some advantages for cosmological

analyses: in this representation the dynamics of the term are confined to the

scalar sector, while in the b2 representation they are coupled to matter.

• The term a1(∇φ)4 can be eliminated in favor of a term b1T
µν∇µφ∇νφ, using the

transformation (4.3.23) parameterized by σ8.

• Alternatively, the term c1G
µν∇µφ∇νφ can be eliminated in favor of a term

b1T
µν∇µφ∇νφ, using the transformation (4.3.23) parameterized by σ8. Our result

in this representation agrees with that of Weinberg [83] when all the matter terms

are dropped. The c1 representation has the advantage over the b1 representation

that the corrections are confined to the scalar sector and do not involve matter.

The term c1G
µν∇µφ∇νφ has interesting effects: it can give rise to a self-tuning

cosmology as well as potentially support a Vainshtein screening mechanism [98].

• As discussed in Appendix D, it is possible to eliminate all the stress-energy terms

from the action by applying field redefinitions. This yields a form of the theory in

which the weak equivalence principle is manifest. However, the resulting action

contains higher derivative terms, unlike all the representations discussed so far in

this subsection. As discussed in the introduction and in Appendix E, to define

the theory when higher derivative terms are present we use the reduction of order

technique applied to the equations of motion.

• Finally, the result can be cast in the Jordan conformal frame by doing a conformal

transformation, followed by some field redefinitions to simplify the answer. The

in powers of ε is nonzero. A nonzero α′ that is proportional to ε would be insufficient
to allow this transformation.
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result is similar in form to the Einstein frame action (4.4.5):

S[g̃αβ, φ̃, ψm] =

∫
d4x
√
−g̃
[

1

2
m2
P e
−αR̃− 1

2
(∇̃φ̃)2 − Ũ(φ̃)

]
+ Sm[g̃αβ, ψm]

+ ε

∫
d4x
√
−g
{
ã1(∇̃φ̃)4 + b̃2T (∇̃φ̃)2 + c̃1G̃

µν∇̃µφ̃∇̃νφ̃

+ d̃3

(
R̃2 − 4R̃µνR̃µν + R̃µνσρR̃

µνσρ
)

+ d̃4ε
µνλρC̃ αβ

µν C̃λραβ

+ ẽ1T
µνTµν + ẽ2T

2

}
. (4.4.6)

Here g̃µν = eαgµν and the field φ̃ is a function of φ, where the function is chosen

to give canonical normalization for φ̃ in the Jordan frame action (4.4.6). All of

the functions Ũ , ã1, etc. in this action differ from the corresponding functions in

the Einstein frame representation (4.4.5), but can in principle be computed in

terms of them. The Jordan frame result (4.4.6) can also be cast in a number of

different forms using linearized field redefinitions, just as for the Einstein frame

result (4.4.5). Note that the stress energy tensor we use is the same in both

frames, and is defined in the Preface. The result (4.4.6) matches that found by

Park et al. [86] (up to some minor adjustments, see Appendix F).

We note that the Chern-Simons term (d4) gives rise to third-order derivatives in

the equations of motion [see Eqs. (G.4) and (G.5) below]. However, with the choice of

foliation9 given by surfaces of constant φ, there are no third-order time derivatives, and

so the Chern-Simons term is not a higher-derivative term according to our definition

(see the discussion in Section 4.1.II above), and is not subject to the Ostrogradski

instability. For further discussion of the Chern-Simons term in gravitational theories,

see, e.g., Ref. [99]. As a parity-violating term, this term modifies the propagation

speed of different polarizations of gravitons.

In the above derivation, we eliminated higher derivative terms using field redefini-

tions. As discussed in Appendix E, an alternative but equivalent procedure is to derive
9This choice requires the assumption that ∇φ is timelike everywhere, which will

be true in cosmological applications when perturbations are sufficiently small.
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a form of the action which explicitly exhibits the extra degrees of freedom associated

with the higher derivative terms, and then integrate out those degrees of freedom

at tree level. This is shown explicitly for higher derivatives of the scalar field in

Appendix E, and can also be shown explicitly for the terms d1 and d2 involving higher

derivatives of the metric. A third, equivalent method is to perform a reduction of order

procedure at the level of the equations of motion, as discussed in the introduction and

in Appendix E.

The above derivation confirms the general argument made in the introduction that

it should not be necessary to include higher derivative terms in the action. This is

because the new terms that are generated when one eliminates the higher derivative

terms should already be included in the derivative expansion. In the above derivation,

if we eliminate from the start the higher derivative terms (a3, b3, b4, b5, b6, c2, c3, d1, d2),

then we must also forbid all transformations that generate these terms, which includes

all the transformations we have considered except Eqs. (4.3.3), (4.3.4), (4.3.11) and

(4.3.23). The above derivation gets modified by dropping steps 2, 3, and 4, the portion

of step 5 that sets a3 to zero, and the portion of step 6 that sets b3 to zero. The final

result (4.4.5) is unchanged.

In a similar vein, the correct result can also be obtained by omitting from the initial

action all terms involving the stress energy tensor, that is, the terms parameterized

by b1, . . . , b7 and e1, e2. If one follows all the steps of the derivation in Table 2,

the same final result is obtained, and all the final coefficients are nonzero in general.

This occurs because all the terms involving the stress energy tensor have alternative

representations not involving it (although they do involve higher derivatives). Thus,

from this point of view, it is not necessary to include in the action stress-energy terms.

However, it is not possible to do without both the higher derivative terms and the

stress-energy terms. Suppose we throw out at the start all the higher derivative terms
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in both the action (4.2.1) and Jordan frame metric (4.2.4), and in addition omit all

the stress-energy terms in the action. This would yield a version of the action (4.2.1)

involving only the terms a1, a2, β1, β2, c1, d3 and d4. Using the transformation (4.3.2)

the terms β1 and β2 can be exchanged for b1 and b2, and the terms a2 and b1 can

then be eliminated using the transformations parameterized by σ3 and σ8. This yields

our final action (4.4.5) but without the terms e1 and e2, which in general arise from

intergrating out heavy fields which are gravitationally coupled. Therefore, for a fully

general theory, one can choose to eliminate higher derivative terms, or stress-energy

terms, but not both.

III Extension to N scalar fields: Qui-N-tessence

The preceding analysis can be generalized straightforwardly to the case of N scalar

fields, which we call “qui-N-tessence”, an analog of multifield inflation [100, 81]. The

zeroth-order action (4.2.2) gets replaced by a general nonlinear sigma model:

S0 =

∫
d4x
√
−g
[
m2
P

2
R− 1

2
qAB(φC)∇νφ

A∇µφ
Bgµν − U(φC)

]
, (4.4.7)

where φA = (φ1, . . . , φN) are the N scalar fields and qAB is a metric on the target

space. In the remainder of the action, functions of φ are replaced by functions of φA.

The first three terms of the second line of Eq. (4.4.5) are replaced by

a1ABCD∇µφ
A∇νφ

B∇λφ
C∇σφ

Dgµνgλσ + a2ABC∇µ∇λφ
A∇σφ

B∇λφ
Cgµνgλσ

+ c1ABG
µν∇µφ

A∇νφ
B. (4.4.8)

Thus the coefficients a1, a2 and c1 become tensors on the target space of the indi-

cated orders. Note that we must use the representation involving the coefficients

a1ABCD, a2ABC and not b1AB, b2AB (we assume α,A 6= 0) since the latter are less

general; the equivalence between the different representations discussed in Section
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4.4.II does not generalize to the N field case. When N ≥ 4 one could also add a term

a4ABCD∇µφ
A∇νφ

B∇λφ
C∇σφ

Dεµνλσ, (4.4.9)

where a4ABCD is an arbitrary 4-form on the target space.

4.5 Order of Magnitude Estimates and Domain of Validity

In the previous sections, we started from the standard quintessence model with a

matter coupling (4.2.2), and added arbitrary corrections involving the scalar field

and metric in a derivative expansion up to four derivatives. We then exploited the

field-redefinition freedom to eliminate all terms that give rise to additional degrees of

freedom (“higher derivative terms”), and to reduce the set of operators in the action

to the canonical and unique set given in our final action (4.4.5).

We now turn to estimating the scaling of the coefficients in the final action using

effective field theory. We will then use these estimates to determine the domain of

validity of the theory.

I Derivation of Scaling of Coefficients

We start by recalling the scenario of pseudo-Nambu-Goldstone Bosons [94, 95] discussed

in the introduction that may give rise to the zeroth-order action (4.2.2). Suppose

that at some high-energy scale M∗ we spontaneously break a set of continuous global

symmetries and thereby generate N massless Goldstone bosons φA = (φ1, . . . , φN).

The theory then has N residual continuous symmetries. If we now suppose that these

residual symmetries are explicitly broken at some much lower energy scale Λ, then a

potential is generated that scales as Λ4V (φA/M∗), for some function V which is of

order unity. In particular the mass of the pNGB fields scale as Λ2/M∗ and can be
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very light. For example, in axion models M∗ ∼ 1012 GeV and Λ ∼ ΛQCD ∼ 100 MeV,

giving an axion mass of order 10−5 eV.

The leading order action for the pNGB fields coupled to gravity at low energies

will be that of a nonlinear sigma model,

S =

∫
d4x
√
−g
[

1

2
m2
PR−

1

2
qAB(φC/M∗)∇νφ

A∇µφ
Bgµν − Λ4V (φC/M∗)

]
, (4.5.1)

where qAB is a metric on the target space which admits N Killing vectors (the residual

symmetries). In the special case where qAB is flat, these residual symmetries are shift

symmetries φA → φA+ constant. We now assume that these fields drive the cosmic

acceleration, and in addition we assume that the kinetic and potential terms are of

the same order, that is, we assume that slow roll parameters are only modestly small.

It then follows from the action (4.5.1) that the scales of spontaneous and explicit

symmetry breaking M∗ and Λ must be of order10

M∗ ∼ mP , Λ ∼
√
H0mP , (4.5.2)

where H0 is the Hubble parameter, so that the quintessence fields have mass ∼ H0

and energy density ∼ m2
PH

2
0 . Defining the dimensionless fields ϕA = φA/mP allows

us to rewrite the action as

S =

∫
d4x
√
−g
[

1

2
m2
PR−

1

2
m2
P qAB(ϕC)∇νϕ

A∇µϕ
Bgµν −m2

PH
2
0V (ϕC)

]
. (4.5.3)

Consider now the stability of the theory (4.5.3) under loop corrections. The story

is exactly the same here as in inflationary models [101, 94] (aside from couplings to

matter, see below). Computing loop corrections starting from the action (4.5.3) does

not lead to large corrections δm� H0 to the mass of the quintessence fields, because

in the limit where the explicit symmetry breaking scale Λ =
√
mPH0 goes to zero, the

theory possesses exact symmetries which must be respected by the loop corrections.

10The need to use the Hubble scale today in the symmetry breaking scale Λ is
associated with the coincidence problem.
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Hence the loop corrections to the potential must scale proportionally to H2
0m

2
P , as

for the original potential. Thus the smallness of the mass of the quintessence field is

natural in the sense of ’t Hooft. However, this is not the entire story, since the form

(4.5.3) of the low-energy theory imposes non trivial constraints on the physics at high

energies, which must respect the residual symmetries. Indeed in general there is no

guarantee that there exists a consistent high-energy theory with the low-energy limit

(4.5.3). This question is beyond the scope of this work: we shall simply assume that a

consistent UV theory can be found. See Ref. [102] for an example of an attempt to

address this issue.

So far in the discussion we have neglected coupling to matter. If we assume the

validity of the weak equivalence principle, the general leading order coupling of φC

to matter will be of the form of a scalar-tensor theory, given by adding to the action

(4.5.3) the term

Sm

[
eα(φc/M∗)gµν , ψm

]
= Sm

[
eα(ϕc)gµν , ψm

]
, (4.5.4)

for some function α.

We now suppose that one or more of the pNGB fields has a mass ∼ M which is

parametrically larger than H0, and we integrate out these heavier fields, following the

similar analysis of inflationary models by Burgess, Lee and Trott [84]. Integrating out

the heavier fields gives rise to modifications to the target space metric and potential

for the remaining light fields [that do not change the scalings shown in Eq. (4.5.3)],

and also a set of correction terms to the leading order action (4.5.3). The leading,

tree-level correction terms can be obtained simply by solving the classical equations

of motion for the heavy fields in an adiabatic approximation and substituting back
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into the action. One finds that the induced correction terms have the form11

M2m2
P

∑
n

cn
Md
On, (4.5.5)

where the sum is over operators On involving d derivatives acting on k powers of

the dimensionless fields ϕ and/or gµν , and the coefficients cn are of order unity (see

Appendix H for details). In other words, each additional derivative is suppressed by a

power of the mass M of the fields that have been integrated out (which we can think

of as a cutoff scale), and the overall prefactor is such that the normal kinetic terms

would be reproduced for the case k = d = 2.

Note that the rule (4.5.5) for how the coefficients of additional corrections to the

action depend on the cutoff scale M differs from the usual rule of effective field theory,

where an operator of dimension D + 4 has a coefficient ∼ M−D. The rule (4.5.5)

instead gives a coefficient ∼M−(d−2)m
−(k−2)
P , where d is the number of derivatives in

the operator and k is the number of powers of (canonically normalized) fields, related

to D by D = d + k − 4. The difference between the two rules arises from the fact

that we are making nontrivial assumptions about the physics above the scale M ,

specifically that it is described by an action of the pNGB form (4.5.3) 12. If we were

to allow arbitrary physics at energies above the scale M , then the coefficients would

scale according to the standard rule.

We now specialize to the case of a single light field. The correction terms (4.5.5)

have the form of a double power series, in number of derivatives and in powers of the

11These are the terms involving just the scalar field and metric. One also finds
correction terms involving the matter stress energy tensor as long as α′ 6= 0, of the
form indicated in Table 3.

12More general interactions which are not of the form (4.5.3) can modify the scaling
rule (4.5.5), even if they respect the residual (shift) symmetries. For example consider
a scalar field ψ of mass m which couples to φ via a term ψ(∇φ)2/m∗ for some mass
scale m∗. Integrating out this field gives a correction to the φ action ∼ (∇φ)4/(m2m2

∗)
(see Appendix H). To keep such terms from invalidating the scaling rule we need to
assume that mm∗ &MmP , i.e. that any such fields are either sufficiently massive or
sufficiently weakly coupled to the pNGB fields.
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Coefficient Term in Action Scaling

a1 (∇φ)4 ∼ 1/(m2
PM

2)
a2 �φ(∇φ)2 ∼ 1/(mPM

2)
a3 † (�φ)2

b1 T µν∇µφ∇νφ ∼ 1/(m2
PM

2)
b2 T (∇φ)2 ∼ 1/(m2

PM
2)

b3 † T�φ
b4 † T µν∇µ∇νφ
b5 † RµνTµν
b6 † RT
b7 T
c1 Gµν∇µφ∇νφ ∼ 1/M2

c2 † R(∇φ)2

c3 † R�φ
d1 † R2

d2 † RµνRµν

d3 Gauss-Bonnet ∼ m2
P/M

2

d4 Chern-Simons ∼ m2
P/M

2

e1 T µνTµν ∼ 1/(m2
PM

2)
e2 T 2 ∼ 1/(m2

PM
2)

Table 3: This table gives the scalings of the various coefficients. The first column
lists the coefficients, and the second column lists the corresponding terms
in the action (4.2.3). Daggers in the first column indicate higher derivative
terms. The third column gives our estimate of the scale of the coefficients,
under the assumptions discussed in the text, for those coefficients that are
nonzero in our final action (4.4.5), or in versions of that action obtained
using the field redefinitions (4.3.11) or (4.3.23). The quantity M is the mass
of the lightest field that is integrated out to produce our final action. In all
cases, these scales for the coefficients correspond to fractional corrections
to the leading order dynamics of order ∼ H2

0/M
2.
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fields. If we fix the number of derivatives and associated index structure, we can sum

over all operators that differ only by powers of ϕ to obtain operators with prefactors

that are functions of ϕ,

f(ϕ) =
∑

ckϕ
k (4.5.6)

with coefficients of order unity. We now write out all the resulting terms to leading

order in 1/M2, imposing general covariance. The result is the theory (4.4.5) discussed

in the previous section13, but with additional information about the coefficients a1, b1

etc. Specifically we find that

a1(φ) =
1

m2
PM

2
â1(φ/mP ), (4.5.7)

where the function â1 is of order unity, i.e., the coefficients in its Taylor expansion are

independent of mP and M . The corresponding prefactors or overall scaling for the

other coefficients are listed in Table 3.

Finally, we note that, as is well-known, Solar System tests of general relativity

strongly constrain the coupling of φ to the matter sector14. If we define the dimension-

less parameter λ = mP |α′(φ0)|, where φ0 is the present day cosmological background

value of φ, then the Solar System constraint is15 λ . 10−2 [77]. In addition the

coupling of the scalar to the visible sector will generically give rise to large corrections

to the quintessence potential via loop corrections [104, 105, 106, 107, 108]. For a

fermion of mass mf , the correction δm to the mass of the quintessence field will be of

13The parity-violating Chern-Simons term is not generated in this way, since the
fields we are integrating out do not violate parity. To obtain the Chern-Simons term
with the scaling indicated in Table 3 would require integrating out some parity violating
fields at the scale M which approximately respect the residual (shift) symmetries.

14Strictly speaking, Solar System tests lie outside the domain of validity of our
effective field theory unless M−1 . 1 A.U., which is very small compared to H−1

0 ; see
Section 4.5.II above.

15This constraint can be evaded in models where nonlinear effects in φ are important
in the Solar System, such as Chameleon [103] and Galileon models [29, 30, 31].
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order

δm

H0

∼ λ

(
m2
f

H0mP

)
. (4.5.8)

If λ ∼ 1 and mf �
√
mPH0 ∼ 10−3 eV, then δm� H0, which is inconsistent if the

quintessence field is to drive cosmic acceleration. This is a well-known naturalness

problem for matter couplings in quintessence models, and it motivates setting16 α = 0.

II Domain of Validity of the Effective Field Theory

We now estimate the domain of validity for the theory (4.4.5) with the scalings given

by Table 3, by requiring that the terms with higher derivatives be small compared

to terms with fewer derivatives. If E is the energy involved in a given process, or

equivalently E−1 is the corresponding time-scale or length-scale, then successive terms

in the derivative expansion are suppressed by the ratio E/M , which yields the standard

condition

E �M (4.5.9)

for the domain of validity. As discussed in the introduction, M must be somewhat larger

than H0 in order to describe the background cosmology and observable perturbation

modes. However if M is significantly larger than H0 then the corrections due to the

higher-order terms in Eq. (4.4.5) become negligible, and the theory reduces to a

standard quintessence model with some matter coupling. Therefore, the interesting

regime is when M is perhaps just one or two orders of magnitude larger than H0,

as indicated in Fig. 9. In particular, when the scale M is in this interesting regime,

the theory is unable to describe gravitational effects in the Solar System and binary

pulsars, which is a shortcoming of the effective field theory approach used here.

16More precisely the condition is α′ = 0, i.e., α = constant, but the constant can be
absorbed by a rescaling of all the dimensionful parameters in the matter action.
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Consider now the background cosmological solution. The theory (4.2.1) to zeroth-

order in ε (or equivalently 1/M2) has the equations of motion

m2
PGαβ = ∇αφ∇βφ−

1

2
(∇φ)2gαβ − U(φ)gαβ + e2α(φ)Tαβ, (4.5.10a)

�φ = U ′(φ)− 1

2
α′e2αT. (4.5.10b)

For each of these two equations we assume that all of the terms are of the same order.

For the matter terms this is this is a reasonable approximation, since ΩΛ ∼ 0.7 and

Ωmatter ∼ 0.3. If the scalar potential term dominates over the kinetic term, then the

following estimates need to be modified by including factors of slow roll parameters;

we ignore these factors here since we expect them to be only modestly small. Similarly,

our estimates assume that mPα
′ is of order unity; some changes would be required if

this quantity were very small. From these assumptions, and ignoring O(1) functions

of the scalar field, we have

m2
PR ∼ (∇φ)2 ∼ U ∼ T ∼ mP�φ ∼ mPU

′(φ) ∼ H2
0m

2
P . (4.5.11)

Inserting these estimates into the action (4.4.5) and using the scalings given in Table

3, we find that for each of the correction terms in the action, the fractional corrections

to the leading order cosmological dynamics scale as H2
0/M

2. The corrections therefore

are of order unity at M ∼ H0, as we would expect, since at this scale the heavy fields

which we have integrated out have the same mass scale as the light fields, and would

be expected to give rise to O(1) corrections to the dynamics. This gives a useful

consistency check of the calculations underlying Table 3 discussed in the previous

subsection.

In addition to the standard constraint (4.5.9), there are other constraints on

the domain of validity which we now discuss. We focus attention on cosmological

perturbations, for which φ(t,x) = φ0(t) + δφ(t,x), and consider the conditions under

which the dynamics of the perturbation δφ can be described by the effective theory.
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Consider localized wavepacket modes δφ, where the size of the wavepacket is of the

same order as the wavelength, both ∼ E−1. For such modes we can characterize

perturbations in terms of two parameters, the energy E and the number of quanta

or mode occupation number N . The total energy of the wavepacket will be of order

NE ∼
∫
d3x(∇δφ)2 ∼ E−3(Eδφ)2 which gives the estimate

δφ ∼
√
NE. (4.5.12)

The fractional density perturbation due to the wavepacket is of order

δρ

ρ
∼ (∇δφ)2

H2
0m

2
P

∼ NE4

H2
0m

2
P

. (4.5.13)

We now demand that the term a1(∇δφ)4 in the action17 be small compared to the

leading order term (∇δφ)2. Using the scaling a1 ∼ 1/(m2
PM

2) from Table 3 and

combining with the estimate (4.5.13) of the fractional density perturbation then gives

the constraint18

δρ

ρ
� M2

H2
0

. (4.5.14)

Thus, the theory can describe perturbations in the nonlinear regime, but the pertur-

bations can only be modestly nonlinear if M is fairly close to H0. In terms of the

parameters E and N the constraint (4.5.14) is

NE4 �M2m2
P . (4.5.15)

17Here we envisage computing an action for the perturbations by expanding the
action (4.4.5) around the background cosmological solution, as in Ref. [84].

18In the previous subsection we showed that a1(φ) = â1(φ/mP )/(M2m2
P ), where â1 is

function for which all the Taylor expansion coefficients are of order unity. It follows that
â1 ∼ 1 for φ ∼ mP . However the estimate (4.5.14) requires the stronger assumption
â1 . 1 for φ� mP which need not be valid. If we instead assume that â1 ∼ (φ/mP )α

for φ� mP then the constraint (4.5.15) gets replaced by N(E/M)γ � m2
P/M

2, where
γ = 2(4 + α)/(2 + α). This modifies the boundary of the domain of validity of the
effective field theory shown in Fig. 10 by changing the slope of the tilted portion of
the boundary. In the limit α→∞ this portion of the boundary approaches the green
curve δϕ ∼ mP .
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This gives a nontrivial constraint on the domain of validity of the theory in the regime

E .M . The two dimensional parameter space (E,N) is illustrated in Fig. 10, which

shows the constraints (4.5.9) and (4.5.14), the curves δρ/ρ ∼ 1 and δρ ∼M2/H2
0 , as

well as the curve where δφ ∼ mP .

Another potential constraint on the domain of the validity of the theory (4.4.5)

with the scalings given by Table 3 is that the theory should be weakly coupled, i.e.

the effects of loop corrections should be small. Using the power counting methods of

Ref. [84] one can show that this is indeed true within the domain H0 . E � M of

interest. Strong coupling can arise due to tri-linear couplings, as discussed in Section

2.2 of Ref. [84], but this only occurs for energies far below the Hubble scale H0, and

so is not relevant to cosmological applications of the theory.

We note that there are several well-known theories of cosmic acceleration that are

not encompassed by our effective field theory. The form of our expansion requires

that the dominant contribution to cosmic acceleration be the leading order scalar

terms and not the higher-order terms, and so theories in which other mechanisms

provide the acceleration cannot be described in our formalism. One example is

provided by k-essence models in which terms in the action like (∇φ)4, (∇φ)6 . . . are

all equally important. In particular this is true for ghost condensate models [20].

Also there are many cosmic acceleration models that exploit the Vainshtein effect

[109, 110, 111] to evade Solar System constraints on light fields with gravitational-

strength couplings. The Vainshtein effect relies on nonlinear derivative terms in the

scalar field action. Although our class of theories includes models that demonstrate

the Vainshtein mechanism, the mechanism only operates outside the domain of validity

of our approach, as we require the nonlinear derivative terms to be small. The

chameleon mechanism [103, 112], on the other hand, does not require nonlinearities

in the derivatives of the scalar field, and thus may be analyzed in our formalism,

although the regime in which a screening mechanism would be required to evade fifth
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force experiments and solar system constraints will be in the regime of validity of our

analysis only for large enough values of the cutoff M .

4.6 Discussion

In this chapter, we have investigated effective field theory models of cosmic acceleration

involving a metric and a single scalar field. The set of theories we considered consists of

a standard quintessence model with matter coupling, together with a general covariant

derivative expansion, truncated at four derivatives. We showed that this class of

theories can be obtained from a pNGB scenario, where one of the pNGB fields is

lighter than all the others, and the heavier fields are integrated out. We showed that

in constructing this class of theories, including higher derivative terms in the action,

as suggested by Weinberg [83], does not give any increased generality. We also showed

that complete generality requires one to include terms in the action that depend on

the stress-energy tensor of the matter fields.

We now turn to a discussion of some of the advantages and shortcomings of the

approach adopted here to describe models of dark energy. Some of the shortcomings

are:

• By construction, our approach excludes theories where nonlinear kinetic terms

in the action give an order unity contribution to the dynamics, such as k-

essence, ghost condensates etc., since such theories do not arise from the pNGB

construction used here, nor does their derivative expansion possess a small

parameter. On the other hand, such theories are less natural than the class of

theories considered here, from the point of view of loop corrections: they require

very nontrivial physics at the scale ∼ H0, instead of at the scale ∼
√
H0mP

required in the pNGB approach. The most general class of theories of this kind
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is that of Horndeski [113], which contains four free functions of φ and (∇φ)2 [26],

and which is the most general class of theories of a metric and a scalar field for

which the equations of motion are second-order. As discussed in the introduction,

these theories are included in the alternative, background-dependent approach to

effective field theories of quintessence of Creminelli et al. [85].

• Our class of theories will be observationally distinguishable from vanilla quin-

tessence theories only if the cutoff M is near the Hubble scale H0. In this regime,

our framework cannot be used to analyze Solar System tests of general relativity,

since they are outside the domain of validity of the effective field theory. Also,

when the background cosmology is evolved backwards in time it passes outside

the domain of validity at fairly low redshifts. (This is not a serious disadvantage

since dark energy dominates only at low redshifts.)

• We have restricted attention to theories with a metric and a single scalar field,

with the only symmetry being general covariance. Thus, our analysis does not

include models with several scalar fields, vector fields etc. In addition, our analysis

excludes an interesting class of models that one obtains by imposing that the

action be invariant under φ→ f(φ), where f is any monotonic function, as such a

symmetry cannot be realized with our derivative expansion. This class of models

includes Horava-Lifshitz gravity and has the same number of physical degrees

of freedom as general relativity [26, 114]. It would be interesting to explore the

most general dark energy models of this kind.

Some of the advantages of the approach used here are:

• Our class of theories is generic within the pNGB construction, which itself is a

well motivated way to obtain the ultralight fields needed for cosmic acceleration.

The theories are fairly simple and it should be straightforward to confront them

with observational data.
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• Our class of theories allow for a unified treatment of the cosmological background

and perturbations, unlike the background-dependent approach of Ref. [85].

Finally, we list some possible directions in which the approach used here could be

extended:

• It would be interesting to compute the relation between the nine free functions

used in our theories to the free functions of the post-Friedmannian approach to

parameterizing dark energy models [26].

• It would be interesting to explore the phenomenology of the various higher-order

terms in our action, for the cosmological background evolution and perturbations.

Many of the terms have already been explored in detail, see for example Refs.

[97, 98].

• Either by using the post-Friedmannian approach, or more directly, it would be

useful to compute the current observational constraints on the free functions in

the action.

• An interesting open question is the extent to which our final action is generic.

That is, is there a class of theories more general than nonlinear sigma model

pNGB theories for which our action is obtained by integrating out some of the

fields?
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Chapter 5

Discussion and Conclusions

Contents
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5.1 Combining Results

We now turn to one final calculation, demonstrating the ability of the EFT approach

of Chapter 4 to include the braneworld low-energy theory described in Chapters 2

and 3. We start from the low-energy braneworld action (3.3.4), reproduced here.

S =

∫
d4x
√
−g

[
R(4)[g]

2κ2
4

− (∇a)2

2
− µ2

2
sinh2

(
a

µ

)N−2∑
n=1

{
n−1∏
m=1

sin2(λm)

}
(∇λn)2

]

+ ST m

[
cosh2

(
a

µ

)
gab, φT

]
+

N−1∑
n=0
n6=T

Sn m

[
sinh2

(
a

µ

)
f 2
n

B′n
gab, φ

n

]
(5.1.1)

From the analysis of the Eddington γ parameter, we know that a/µ ≤ 0.05. This

implies that the only significant radion mode is the field a, and the remaining modes

λn may be neglected. Furthermore, based on the result that the vast majority of

matter must exist on our brane, we can assume that all matter fields live on the
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central brane. Using these assumptions, we can construct an approximate action

S =

∫
d4x
√
−g
[
R(4)[g]

2κ2
4

− (∇a)2

2

]
+ ST m

[
cosh2

(
a

µ

)
gab, φT

]
. (5.1.2)

In the EFT approach, we are then left with a simple correspondence. We make

the identifications a ≡ φ and exp(α(φ)) ≡ cosh2
(
a
µ

)
, while all other functions in the

EFT are vanishing. The factor µ is related to the four-dimensional gravitational scale

by µ =
√

6/κ4 =
√

6m
(4)
P , and so the scaling of the conformal factor follows the form

predicted by the EFT. While this theory obviously satisfies the requirement that the

derivative expansion be valid, the model is unable to explain dark energy, as the scalar

field is massless and thus cannot have the correct equation of state.

5.2 Summary of Results

Although our current understanding of gravity provides a remarkably accurate descrip-

tion of observations from terrestrial to cosmological scales, a number of theoretical

problems remain unsolved. Chief amongst these is the issue of the accelerated expan-

sion of the universe, attributed to an unknown energy density dubbed dark energy.

This dissertation has described two separate approaches to theoretical investigations

of dark energy.

In the first approach, described in Chapters 2 and 3, a class of extra-dimensional

braneworld models were investigated. These models involved generalizations of the

Randall-Sundrum models to include multiple branes in orbifolded and uncompactified

configurations, without radion stabilization. The motivation for these generalizations

was to investigate whether the addition of further branes on a variety of topological

configurations is able to ameliorate the observational constraints that apply to the

original RS-I and RS-II models, or lead to interesting new behavior.
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A method to construct a four-dimensional low-energy description of such models

was described in detail, and applied to the case of N branes in an uncompactified

five-dimensional bulk as an example. The low-energy action of such a model was

shown to be four-dimensional general relativity coupled to N − 1 radion fields in a

non-linear sigma model, as well as matter fields on the branes with conformal couplings

to the radion modes. The requirement that the non-linear sigma model had no ghosts

required that negative tension branes could only exist at orbifold fixed points (i.e.,

orientifolds). The subset of models with this condition have hyperbolic space as the

target space. The Eddington PPN γ parameter was calculated, and it was found

that it could be consistent with observations for only one brane, the equivalent of the

Planck brane in the RS-I model. For essentially the same reasons as in that model,

this implies that a potential solution to the hierarchy problem must involve radion

stabilization. By comparing the gravitational coupling between matter on different

branes, an estimate was made of whether dark matter could reside on another brane

in this class of models.

From combining observational constraints on γ and dark-matter to normal-matter

gravitational couplings, it was found that dark matter cannot reside wholly on another

brane, at least without a radion stabilization mechanism. Qualitatively, models

involving more than two branes were physically very similar to two-brane models. A

single scalar mode dominated the dynamics of the system, and the effect of extra

branes was found to be exponentially suppressed. As such, we found that the inclusion

of multiple branes is unable to circumvent observational constraints on the original

Randall-Sundrum models.

In the second approach, described in Chapter 3, we took an effective field theory

approach to dark energy models. Considering single-field dark energy, we constructed

a derivative expansion, where general relativity and normal quintessence with a non-

minimal coupling are the leading order terms. This approach allowed us to provide a
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general description of dark energy models within the regime in which the derivative

expansion holds. We constrained our approach by requiring that the perturbative

terms did not lead to higher-order derivatives in the equations of motion, which

introduce new degrees of freedom (typically ghost modes), and also by imposing the

weak equivalence principle. We demonstrated how this construction could be arrived

at by integrating out heavy modes in a non-linear sigma model of pseudo-Nambu-

Goldstone bosons, and used the properties of this construction to derive the regime

of validity of our effective field theory. Furthermore, we motivated the scaling of the

different operators based on the pNGB construction. It is hoped that this construction

will aid in establishing generic observational constraints on dark energy models. At

least one collaboration is currently investigating this possibility.

5.3 Future Prospects

I Theoretical Prospects

The effective field theory approach taken in Chapter 4 is very general in the sense

that it captures the leading-order effects of scalar field dark energy models. However,

as has been previously noted, the regime of validity of the description is somewhat

restrictive. Furthermore, the background behavior of dark energy models is somewhat

degenerate, as even for standard minimally coupled quintessence, it is possible to

choose a potential to yield any cosmological history a(t). The inclusion of further

free functions compounds this degeneracy. Therefore, it is of great interest to identify

the perturbative behavior of dark energy models, whose influence on the growth of

structure in the late universe will be fundamental in applying observational constraints

to the parameter space.

In inflation, a very successful effective field theory of the perturbations in the inflaton
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field has been constructed by Cheung et al. [80], and applied to quintessence models

by Creminelli et al. [85]. The background evolution of the universe must be specified

as an input to the theory, but the theory can handle regimes in which our approach is

invalid. A benefit of this approach is that there are fewer free functions present in the

description. While this signals a degeneracy among the functions described in this

work, it does give hope that the application of observational constraints will be more

straightforward.

However, previous work has only considered minimally coupled quintessence fields.

Work presented here motivates a number of possible couplings between quintessence

fields and matter, and so it will be of use to extend the EFT of inflation work to

describe various matter couplings. This work is currently in progress.

II Experimental Prospects

While our theoretical tools for probing dark energy are developing, it is also exciting

to see a number of upcoming experiments that are designed to help yield information

on the cosmological evolution. Currently underway and due to release data soon,

the Planck mission will observe the CMB anisotropies to unprecedented accuracy.

This will be of great use in describing cosmological parameters and understanding

the spectrum of perturbations that seeded large scale structure. Looking towards

the future, Stage IV experiments such as Euclid, the LSST, and WFIRST have been

designed to undertake large imaging surveys of the sky, while experiments such as

BigBOSS and Euclid will be making spectroscopic measurements of galaxies. The

combined data sets from upcoming experiments will hopefully allow us to place

stringent constraints on dark energy models, and ascertain whether or not dark energy

is dynamical in our universe.
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Appendix A

Five-Dimensional Ricci Scalars

and Exact Equations of Motion

Here we present the dimensionally reduced Ricci scalar and the exact equations of

motion for the action (2.5.23). We include the order at which terms appear in terms

of our scaling parameter, ε.

1 Dimensional Reduction of the Ricci Scalar

The constraint det γ̂ = −1 may be enforced either at the level of the equations of

motion, or by using a Lagrange multiplier.

If the constraint det γ̂ = −1 is being enforced at the level of the equations of motion,

then it is simplest to compute the equations of motion using the metric (2.5.4), and

then perform a conformal transformation on the quantities in the equations of motion.

In this metric, the five-dimensional Ricci scalar is given by

Rn (5) = ε2
(
Rn (4) − 2∇a∇a Φn

Φn

)
−

γn ab γn ab,yy

Φn 2
+ γn ab γn ab,y

Φn ,y

Φn 3

− 1

4 Φn 2

(
γn ab γn ab,y

)2
+

3

4 Φn 2
γn ab γn ac,y γ

n cd γn db,y, (A.1)

where covariant derivatives and the four-dimensional Ricci scalar are those associated

with γn ab.
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For the constraint det γ̂ = −1 to be enforced at the level of the action, a Lagrange

multiplier term must be added to the action

∆S =
N∑
n=0

∫
Rn

d5xn λn (xa, y)
(√
− γ̂n − 1

)
, (A.2)

where λn (xa, y) are the Lagrange multiplier fields. Using the metric (2.6.5), the

five-dimensional Ricci scalar is given by

Rn (5) = ε2e− χn
(
Rn (4) − 3∇a∇a χ

n − 3

2
(∇a χn )(∇a χ

n )

−2∇a∇a Φn

Φn
− 2(∇a χn )(∇a Φn )

Φn

)
+

1

Φn 2

(
−1

4
γ̂n ab γ̂n ac,y γ̂

n cd γ̂n db,y − 5( χn ,y)
2 − 4 χn ,yy + 4

Φn ,y

Φn
χn ,y

)
, (A.3)

where covariant derivatives and the four-dimensional Ricci scalar are those associated

with γ̂n ab. To obtain this form, we use the following two formulae that may be derived

from the fact that det( γ̂n ab) = −1:

γ̂n ab γ̂n ab,y = 0, (A.4)

γ̂n ab γ̂n ab,yy = γ̂n ab γ̂n bc,y γ̂
n cd γ̂n da,y. (A.5)

The complete action (with ε scaling and Lagrange multipliers) is given by Eq. (2.7.1).

2 Varying the Action

We use γ̂n ab to compute covariant derivatives, the four-dimensional Ricci scalar Rn (4)

and the four-dimensional Einstein tensor G
n (4)

ab . Indices will also be raised and lowered

using this metric.

Varying the action (2.7.1) with respect to Φn , we find the bulk equation of motion

ε2e− χn
(
Rn (4) − 3

2
(∇a χn )(∇a χ

n )− 3∇a∇a χ
n

)
− 3

Φn 2
χn 2
,y

+
1

4 Φn 2
γ̂n ab γ̂n bc,y γ̂

n cd γ̂n da,y − 2κ2
5Λn = 0. (A.6)
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From combining the variations with respect to γ̂n ab and χn (after eliminating the

Lagrange multiplier by tracing over the γ̂n ab equation of motion, or enforcing det γ̂ = −1

on the equations of motion), we obtain a traceless tensor equation of motion in the

bulk

1

2
Φn 2ε2e− χn

(
4 G
n (4)

ab + γ̂n ab R
n (4) + 2(∇a χ

n )(∇b χ
n )− 1

2
γ̂n ab(∇c χn )(∇c χ

n )

− 4∇a∇b χ
n + γ̂n ab∇c∇c χ

n

)
+

3

2
Φn ε2e− χn

(
−4∇a∇b Φn + 4(∇(a Φn )(∇b) χ

n )

+ γ̂n ab∇c∇c Φn − γ̂n ab(∇c Φn )(∇c χn ))

− γ̂n ab,yy +
Φn ,y

Φn
γ̂n ab,y − 2 χn ,y γ̂

n
ab,y + γ̂n ac,y γ̂

n cd γ̂n db,y = 0, (A.7)

and a scalar equation of motion in the bulk

1

2
Φn 2ε2e− χn

(
− Rn (4) +

3

2
(∇a χn )(∇a χ

n ) + 3∇a∇a χ
n

+
5

Φn
∇a∇a Φn +

5

Φn
(∇a Φn )(∇a χn )

)
+

1

4
γ̂n ab γ̂n ab,yy + 3 χn ,yy + 3( χn ,y)

2 − 3
Φn ,y

Φn
χn ,y + 2 Φn 2κ2

5Λn = 0. (A.8)

These variations also give rise to the boundary conditions on the branes

1

Φn
γ̂n ab,y −

1

Φn+1
γ̂n+1
ab,y = 2κ2

5ε
2e− χn

(
Tn ab − γ̂n ab

1

4
γ̂n cd Tn cd

)
, (A.9)

and

−
3 χn ,y

Φn
+

3 χn+1
,y

Φn+1
+ 2κ2

5σn =
1

2
κ2

5ε
2e− χn γ̂n ab Tn ab. (A.10)

The four-dimensional stress energy tensors on the branes ( Tn ab) are defined by Eq.

(0.0.1), where factors of h are converted into factors of γ̂ as appropriate.

Note that every factor of ε2 is accompanied by a factor of exp(− χn ). Also note

that the O(1) terms in these equations are exactly our equations of motion (2.7.3) to

(2.7.7).
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Appendix B

Results on an Orbifold

In this appendix, we derive the four-dimensional low-energy action of an orbifolded

N -brane model, and show that it is equivalent to the uncompactified model up to the

rescaling of parameters.

We begin by describing the construction of the model, using the notation established

in Chapter 2. Consider a model with N branes on an orbifold. The first and last

branes are taken to be at the orbifold fixed points. The other N −2 branes lie between

these two branes on one half of the orbifold, and are duplicated on the other half by

the symmetry. These regions effectively lie on a circle, and so the coordinate describing

the extra dimension will be periodic. To calculate the action for this model, we take

there to be 2(N − 1) regions and 2(N − 1) branes. Let the first brane be labeled

by B0, situated at y = 0, where y is the coordinate describing the extra dimension.

After gauge specializing, let there be N − 1 branes located at y = 1, 2, . . . , N − 1.

In between the branes, we have N − 1 bulk regions. To account for the orbifolding,

continue the extra dimension in the negative y direction, with another N − 1 branes

located at y = −1,−2, . . . ,−N + 1, with the coordinates y and −y identified. The

y coordinate varies from −N + 1 to N − 1, and these endpoints are identified under

periodic boundary conditions in y. The branes labeled N − 1 and −N + 1 are thus the
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B0 B1 B2 BN-1B-1B-2B-N+1

y
R-1 R1 R2 RN-1R-2R-N+1

Equivalent by Orbifold

Equivalent by periodic boundary conditions

Figure 11: Diagram indicating how the branes are labeled in the construction of the
orbifolded model. The orbifold symmetry identifies y with −y, and we
impose the periodicity condition of identifying y with y + 2N − 2. To
calculate the action, the model is broken up into 2(N − 1) bulk regions
Rn, but regions Rn and R−n coincide by the orbifold symmetry.

same brane. Labellings are described in Fig. 11. The action for this model is given by

S
[
gΓΣ, x

n Γ, φn
]

=

(
N−1∑
n=1

+
−1∑

n=−N+1

)∫
Rn

d5xn
√
− gn

(
Rn (5)

2κ2
5

− Λn

)

+
N−2∑

n=−N+1

1

κ2
5

∫
Bn
d4wn

√
− hn

(
Kn + + Kn −)

−
N−2∑

n=−N+1

σn

∫
Bn
d4wn

√
− hn + S0 m [ h0 ab, φ

0 ]

+
1

2

(
N−1∑
n=1

+
−1∑

n=−N+1

)
Sn m[ hn ab, φ

n ] (B.1)

The sums over branes which only run to N − 2 are written so because the branes

−N + 1 and N − 1 are the same brane. Note that the brane tensions at the orbifold

fixed points are included once only, while the brane tensions on the other branes

are doubly included. This is just a choice of how to describe the brane tensions in

the orbifold. The choice of the factor of 1/2 in the matter actions accounts for the

doubling that occurs with the orbifolding.

The procedure described in Chapter 2 may now be followed for each region. We

gauge specialize to the straight gauge, before separating length-scales in the action.

Writing the metric in each region as

dsn 2 = e χn (xcn,yn) γ̂n ab(x
c
n, yn)dxandx

b
n + Φn 2(xcn, yn)dy2

n (B.2)
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with det(γ̂) = −1, we can find the equations of motion at lowest order in the separation

of length-scales. The following equations and boundary conditions arise, corresponding

to Eqs. (2.5.11), (2.5.12), (2.7.3), (2.7.4), (2.7.5), (2.7.6), and (2.7.7). Note that the

equations in regions n and −n are identical, as required by the orbifolding condition:

χn (wcn, n) = χn+1 (wcn, n) (B.3)

2

3
κ2

5σn =
χn ,y

Φn

∣∣∣∣
yn=n

−
χn+1
,y

Φn+1

∣∣∣∣
yn+1=n

(B.4)

γ̂n ab(w
c
n, n) = γ̂n+1

ab(w
c
n, n) (B.5)

1

Φn
γ̂n ab,y(w

c
n, n) =

1

Φn+1
γ̂n+1
ab,y(w

c
n, n) (B.6)

0 =
1

4
γ̂n ab γ̂n bc,y γ̂

n cd γ̂n da,y − 3 χn 2
,y − 2κ2

5 Φn 2Λn (B.7)

γ̂n ad,yy = γ̂n ab,y γ̂n bc γ̂n cd,y − γ̂n ad,y

(
2 χn ,y −

Φn ,y

Φn

)
(B.8)

0 =
1

12
γ̂n ab γ̂n bc,y γ̂

n cd γ̂n da,y + χn 2
,y + χn ,yy −

Φn ,y

Φn
χn ,y +

2

3
κ2

5 Φn 2Λn.

(B.9)

The boundary conditions at the first and last branes are

0 = γ1 ab,y

∣∣
y1=0+

(B.10)

0 = γN−1
ab,y

∣∣
yN−1=(N−1)−

(B.11)

−P1
1

3
κ2

5σ0 =
χ1 ,y

Φ1

∣∣∣∣
y1=0+

(B.12)

and

PN−1
1

3
κ2

5σN−1 =
χN−1
,y

ΦN−1

∣∣∣∣∣
yN−1=(N−1)−

. (B.13)

Equation (B.8) should be solved first. The solution (in matrix notation and

suppressing indices n) is

γ̂(xa, y) = A(xa) exp

(
B(xa)

∫ y

Φ(xa, y′)e−2χ(xa,y′)dy′
)

(B.14)
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where A(xa) and B(xa) are arbitrary 4× 4 matrices such that γ̂ has the properties of

a metric. Combining this with Eqs. (B.5) and (B.6), we see that B is independent of

region. The boundary conditions Eqs. (B.10) and (B.11) then imply that B = 0 in

all regions. Finally, the condition (B.5) then implies that A is independent of region,

and so we can write γ̂n ab(x
c, y) = γ̂ab(x

c) for all regions.

The remaining equations of motion are then solved straightforwardly. Defining

kn =

√
−κ2

5Λn

6
, (B.15)

we find

χn ,y = 2Pnkn Φn (B.16)

and the brane-tuning condition

knPn − kn+1Pn+1 =
1

3
κ2

5σn. (B.17)

For the first and last branes, this condition is

k1P1 = − 1

6
κ2

5σ0, (B.18)

kN−1PN−1 =
1

6
κ2

5σN−1. (B.19)

The metric in each bulk region is

dsn 2 = e χn (xc,y)γ̂ab(x
c)dxadxb +

χn 2
,y(x

c, y)

4k2
n

dy2. (B.20)

Following our prescription, we now substitute this into the action (B.1) and integrate

over the fifth dimension. The result is

S [γ̂ab,Ψn, φ
n ] =

∫
d4x
√
−γ̂ 1

2κ2
5

[
N−1∑
n=1

(
eχn

knPn
− eχn−1

knPn

)
R(4)

+
3

2

N−1∑
n=1

(
eχn

knPn
(∇χn)2 − eχn−1

knPn
(∇χn−1)2

)]

+
N−1∑
n=0

Sn m[eχn γ̂ab, φ
n ], (B.21)
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where χn(xa) = χn (xa, n).

We now make the following definitions.

An =

∣∣∣∣ 1

knPn
− 1

kn+1Pn+1

∣∣∣∣ (B.22)

A0 =

∣∣∣∣− 1

k1P1

∣∣∣∣ =
1

k1

(B.23)

AN−1 =

∣∣∣∣ 1

kN−1PN−1

∣∣∣∣ =
1

kN−1

(B.24)

εn = sgn

(
1

knPn
− 1

kn+1Pn+1

)
(B.25)

ε0 = sgn(−P1) = −P1 (B.26)

εN−1 = sgn(PN−1) = PN−1 (B.27)

Ψn =
√
Aneχn (B.28)

With these definitions, the action is given by

S [γ̂ab,Ψn, φ
n ] =

∫
d4x

√
−γ̂

2κ2
5

[
R(4) [γ̂ab]

(
N−1∑
n=0

εnΨ2
n

)
+ 6

N−1∑
n=0

εn(∇aΨn)(∇aΨn)

]

+
N−1∑
n=0

Sn m

[
Ψ2
n

An
γ̂ab, φ

n

]
. (B.29)

This is identical to Eq. (2.8.9) above except for a factor of two multiplying 1/4κ2
5,

which arises from integrating each region twice rather than once. Otherwise, only the

definitions of ε0, A0, εN−1 and AN−1 have changed, which corrects for the removal of

the regions between the first and last branes and infinity in the bulk. Thus, the four-

dimensional low-energy action for this model is the same as for the uncompactified case

(2.9.17), although some parameters have been modified. A special case of the orbifolded

model is the two-brane case, corresponding to the RS-I model (also see Section 2.4).

In this case, the action (B.29) reduces to previously known four-dimensional actions

[62].

Most of the analysis for the orbifolded scenario is identical to that for the orbifolded

scenario. The only time when the orbifolded scenario requires a separate analysis is
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when removing ghost modes. In the orbifolded case, we again want all εn parameters

to have the same sign except for one, which is opposite. Note that we now have

ε0 = sgn(σ0) = −P1 and εN−1 = sgn(σN−1) = PN−1. For the first and last branes, we

may only choose whether ε is positive or negative, while for the intermediary branes,

all of the previously discussed cases are possibilities.

For a single positive εn, we need one of the following configurations:

−, 5, . . . , 5, (2 or 6), 4, . . . , 4,−,

+, 4, . . . , 4,−,

−, 5, . . . , 5,+.

For a single negative εn, the options are

−, 1, . . . , 1,+,

+, 8, . . . , 8,−,

+, 8, . . . , 8, (3 or 7), 1, . . . , 1,+.

The analysis of each configuration proceeds exactly as in Section 3.2. We find that we

must have a single positive εn, with all other εn negative. This implies that all branes

must be positive tension, with the possible exception of the first and last branes,

which may be negative. Again, the warp factor thus rises to a maximum and then

falls again. If the first brane has the maximum warp factor, it has a positive tension,

and similarly for the last brane. The four-dimensional low-energy action specialized

to such a configuration is described by (3.3.4) above.

As the constraints on the Eddington γ factor and the dark matter limits arise only

from this action, the constraints on this orbifolded model are identical to those in the

uncompactified model.

In arriving at the four-dimensional low-energy action (B.29), we make the same

approximations as for the uncompactified case, namely that the separation of length-
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scales is valid everywhere between the branes. However, we don’t have any issues

with the separation of length-scales breaking down towards infinity in the bulk, and

nor do we need to invoke global hyperbolicity to constrain the behavior of the warp

factor outside the collection of branes. Furthermore, the boundary conditions imposed

by the orbifolding ensures that the degree of freedom B is projected out. In these

regards, the orbifolded analysis is more robust than the uncompactified analysis.
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Appendix C

Kaluza-Klein Modes

In this appendix, we venture away from the four-dimensional theory to discuss the

Kaluza-Klein modes of our model. The methods and results here mimic the original

RS-II model [7] closely.

Consider an uncompactified model with N branes (with brane tensions tuned) and

no matter. The solution for the five-dimensional metric can be written as

ds2 = eχ(y)ηabdx
adxb + dy2 (C.1)

after appropriate gauge transformations, where χ,y = 2knPn, and χ is continuous.

Now consider metric fluctuations of the form

ds2 =
(
eχ(y)ηab + hab(x

c, y)
)
dxadxb + dy2. (C.2)

Decomposing hab into Fourier modes hab(x
c, y) = habψ(y) exp(ipcx

c), where pc is a

four-momentum with p2 = −m2, we find to first order in h(
−1

2
m2e−χ − 1

2

∂2

∂y2
+

1

2
(χ,y)

2 +
χ,yy

2

)
ψ = 0. (C.3)

Our gauge choice is haa = ∂ahab = 0. Equation (C.3) is equivalent to Eq. (8) in [7]. As

discussed there, the solutions to this equation are Bessel functions (although here, they

must be defined piecewise because of the piecewise nature of χ). There is a massless

graviton mode, which has been integrated to give the four-dimensional effective
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graviton in our low-energy theory (3.3.4), and a continuum of massive Kaluza-Klein

graviton modes, which in this work were previously truncated.

As in the RS-II model, there is no mass gap. Note that there are no so-called “ultra-

light” [49, 50, 68] modes present in this model, as such modes occur in a model where

the mass spectrum is quantized. Although the presence of extra branes complicates the

mathematics, the physical effect of the Kaluza-Klein modes in our model is essentially

the same as in the RS-II model.

In an orbifolded model, the analysis of the Kaluza-Klein modes follows similarly,

but the orbifolding condition implies that the mass spectrum is quantized, and we

expect ultra-light modes to be present (see [68] and citations therein).
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Appendix D

The Weak Equivalence Principle

In this appendix, we show that including terms in the action that depend explicitly

on the matter stress energy tensor, as in Eq. (4.2.1) above, generically gives rise to

violations of the weak equivalence principle. However, we also show that our specific

model (4.2.1) does not, to linear order in ε. Since the parameter ε essentially counts

the number of derivatives in our derivative expansion, it follows the weak equivalence

principle is satisfied for our derivative expansion up to four derivatives.

1 Generic Violations of Weak Equivalence Principle when

Stress-Energy Terms are Present in Action

Consider first an action principle of the general form

S[gαβ, φ, ψm] = Sg[gαβ, φ] + Sm[ḡαβ, ψm]. (D.1)

Here the first term is a gravitational action, depending only on the metric gαβ and the

scalar field φ, and the second term is the matter action, in which all the matter fields

ψm couple only to the Jordan metric ḡαβ (some function of gαβ and φ), and not to gαβ

and φ individually. By definition, any theory of this form obeys the weak equivalence

principle. What this means is as follows. We define weakly self-gravitating bodies to

be bodies for which we can neglect the perturbations they cause to gαβ and φ. From
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the form of the action (D.1), it follows that all weakly self-gravitating bodies will fall

on geodesics of the metric ḡαβ, and hence will all fall on the same geodesics.

The action principle (4.2.1) we use in this work is not of the general form (D.1),

because of the explicit appearance of terms involving the stress energy tensor in the

gravitational action. Therefore one expects violation of the weak equivalence principle

to arise. We now verify explicitly that this does occur in a specific example. We

choose the following special case of the action (4.2.1), where the only perturbative

term included is the term proportional to the trace of the stress energy tensor:

S =

∫
d4x
√
−g
[

1

2
m2
PR−

1

2
(∇φ)2 − U(φ) + εf(φ)T

]
+ Sm[ḡαβ, ψm]. (D.2)

We choose the matter field ψm to be a scalar field ψ with action

Sm = −
∫
d4x
√
−ḡ
[

1

2
(∇̄ψ)2 + V (ψ)

]
, (D.3)

and we specialize the relation (4.2.4) between the two metrics to be the conformal

transformation ḡαβ = eα(φ)gαβ. This gives T = −e−α(∇ψ)2 − 4V and the total action

is therefore

S =

∫
d4x
√
−g
[1

2
m2
PR−

1

2
(∇φ)2 − U(φ)− 1

2
(eα + 2εe−αf)(∇ψ)2

− (e2α + 4εf)V (ψ)
]
. (D.4)

The kinetic term for ψ can be written as
∫
d4x
√
−ĝ(∇̂ψ)2 where ĝαβ = (eα+2εe−αf)gαβ,

and the potential term can be written as
∫
d4x
√
−g̃V (ψ), where g̃αβ =

√
e2α + 4εfgαβ.

Therefore, objects whose stress energy is composed of different combinations of the

kinetic term and the potential term will fall on different combinations of the metrics

ĝαβ and g̃αβ, violating the weak equivalence principle.
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2 Validity of Weak Equivalence Principle to Linear Order

In the above analysis, we note that the metrics ĝαβ and g̃αβ coincide to linear order

in ε, so there is no violation to this order. We now show that, similarly, none of the

stress-energy-dependent terms included in Eq. (4.2.1) violate the weak equivalence

principle, to linear order in ε.

The key idea of the proof is to use the transformation laws derived in Section 4.3

above to rewrite the theory in the general form (D.1), which we know satisfies the

weak equivalence principle. All of the terms in the action given by Eqs. (4.2.1) – (4.2.4)

are of this form, except for the terms parameterized by the coefficients b1, . . . , b7, e1

and e2. However, as we now show, we can use transformations to eliminate these

terms in favor of the remaining terms which manifestly satisfy the principle.

Consider first the terms in the action (4.2.3) which depend linearly on the stress-

energy tensor. We can eliminate the terms parameterized by b1, . . . , b6 using the

transformation (4.3.3) with β̃i = −2e−2αbi for 1 ≤ i ≤ 6. This generates contributions

to the the terms parameterized by β1, . . . , β6 in the definition (4.2.4) of the Jordan

metric. Similarly, by using the transformation (4.3.4) with α̃ = −2e−2αb7, we can

eliminate the term parameterized by b7 in favor of an O(ε) correction to the function

α in Eq. (4.2.4).

We now turn to the terms in the action (4.2.3) which depend quadratically on the

stress-energy tensor, namely the terms parameterized by e1 and e2. For e1 we use

the transformation (4.3.29) with σ11 = −e−2αe1, and for e2 we use the transformation

(4.3.27) with σ10 = −e−2αe2. These transformations generates new contributions to

the linear stress-energy terms parameterized by b1, b2, b5, b6 and b7 (see Table 1), but

we have already shown that all of those terms satisfy the weak equivalence principle.

To summarize, we have shown that our model (4.2.1) satisfies the weak equivalence
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principle despite the explicit appearance of stress energy terms in the action. Of course,

there can be violations of the strong equivalence principle in models of this kind,

which can even be of order unity [115]. In addition, the weak equivalence principle

will generically be violated by quantum loop corrections, although this is a small effect

[116].

3 Potential Ambiguity in Definition of Weak Equivalence

Principle

We next discuss a potential ambiguity that arises in the definition of the weak equiva-

lence principle. In the definition one restricts attention to bodies whose gravitational

fields, as measured by the perturbations they produce to the metric gµν and scalar

field φ, can be neglected. However, consider for example the field redefinition (4.3.27),

where the metric transforms according to

gαβ = ĝαβ + 2εσ10T ĝαβ. (D.5)

It is possible for the perturbation δĝαβ generated by the body to be negligible, but the

perturbation δgαβ to be non-negligible, because of the appearance of the stress-energy

term in Eq. (D.5). If this occurs then the weak equivalence principle could be valid

for one choice of variables, but not valid for the other choice.

To assess this ambiguity, we now make some order of magnitude estimates. Consider

a body of mass ∼Mb and size ∼ R. Then in general relativity the size of the metric

perturbation due to the body is of order δĝαβ ∼ Mb/(m
2
PR). Suppose now that

σ10 ∼ 1/(m2
PM

2), as indicated by Eq. (4.3.28) and Table 3. Then the contribution

to the metric perturbation δgαβ from the second term in Eq. (D.5) will be of order

Mb/(R
3m2

PM
2), which will be much larger than δĝαβ whenever R�M−1. Therefore

the ambiguity could in principle arise.

158



However, in the models considered in this work, the ambiguity does not occur. This

is because the condition R�M−1 is excluded by the condition (4.5.9) for the validity

of the effective field theory.
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Appendix E

Equivalence Between Field

Redefinitions, Integrating Out

New Degrees of Freedom, and

Reduction of Order

The action (4.2.1) we start with in Chapter 4 contains several higher-derivative terms,

that is, terms which gives contributions to the equations of motion which involve

third-order and fourth-order derivatives of the fields. As discussed in the introduction,

the theory with these higher-derivative terms contains additional degrees of freedom

compared to our zeroth-order action (4.2.2), which contains a single graviton and

scalar. Our goal in this work is to describe a general class of theories containing just

one tensor and one scalar degree of freedom, so we wish to exclude these additional

degrees of freedom1.

Therefore, as discussed in the introduction, we define the theory we wish to consider,

associated with our action (4.2.1), to be that obtained from the following series of

steps:

1. Vary the action to obtain the equations of motion, which will contain third-order

and fourth-order derivative terms which are proportional to ε.

1Higher derivative terms are also generically associated with instabilities [89],
although this can be evaded in special cases, for example R2 terms.
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2. Perform a reduction of order procedure on the equations of motion [90, 91, 92].

That is, substitute the zeroth-order in ε equations of motion into the higher

derivative terms in order to obtain equations that contain only second-order

and lower order derivatives, which are equivalent to the original equations up to

correction terms of O(ε2) which we neglect.

3. Optionally, one can then derive the action principle that gives the reduced-order

equations of motion.

In this appendix, we show that this procedure is equivalent to the computational

procedure we use in Chapter 4, in which we apply perturbative field redefinitions

directly to the action in order to obtain an action with no higher-derivative terms.

We also show that it is equivalent to integrating out at tree level the extra degrees of

freedom that are associated with the higher derivative terms.

We note that the analyses of general quintessence models by Weinberg [83] and

Park et al. [86] used a different method of eliminating higher derivative terms. They

performed a reduction of order procedure directly at the level of the action, that is, they

substituted the zeroth-order equations of motion directly into the higher-derivative

terms in the action, to obtain an action with no higher-derivative terms. We will

show that this method is not in general correct; it does not agree with the theory

obtained by applying the reduction of order method to the equations of motion2.

However, it differs from the correct result only by field redefinitions (that do not

involve higher derivatives), and so for the purpose of attempting to classify general

theories of quintessence, Weinberg’s method is adequate.

2The reason is that substituting the zeroth-order equations of motion into the
action gives an action which is correct off-shell to O(ε0) and on-shell to O(ε), but it
needs to be valid off-shell to O(ε).
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1 Reduction of Order Method

We start by considering the case of just a scalar field; a more general argument valid

for scalar and tensor fields will be given below. Consider a general action of the form

S =

∫
d4x
√
−g
{
−1

2
(∇φ)2 − U(φ) + εF [φ, (∇φ)2,�φ]

}
, (E.1)

where F is an arbitrary function. We introduce the notation K = (∇φ)2 and L = �φ.

We first show that applying the reduction of order procedure to the equations of

motion (steps 1 – 3 above) give rise to a theory of the form (E.1) but with F (φ,K,L)

replaced by another function F̂ (φ,K,L), given by

F̂ (φ,K,L) = F [φ,K,U ′(φ)] + [L− U ′(φ)]F,L[φ,K,U ′(φ)]. (E.2)

To see this, we vary the action (E.1) to obtain the equation of motion

�φ− U ′(φ) + εF,φ − 2ε∇α(F,K∇αφ) + ε�F,L = 0. (E.3)

We now make the field redefinition

ψ = φ+ εF,L[φ, (∇φ)2,�φ]. (E.4)

Rewriting the equation of motion (E.3) in terms of ψ yields

�ψ − U ′(ψ) + εU ′′(ψ)F,L + εF,φ − 2ε∇α(F,K∇αψ) = O(ε2), (E.5)

where the arguments of F,φ, F,L and F,K are now [ψ, (∇ψ)2,�ψ].

We now apply the reduction of order procedure to the equation of motion given by

Eqs. (E.4) and (E.5), that is, we substitute in the zeroth-order equation of motion

�ψ = U ′(ψ). The field redefinition (E.4) gets replaced by the following field redefinition

which does not involve higher derivatives:

ψ = φ+ εF,L[φ, (∇φ)2, U ′(φ)] +O(ε2). (E.6)
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The equation of motion (E.5) is unchanged, except that the arguments of F,φ, F,L and

F,K are now [ψ, (∇ψ)2, U ′(ψ)]. This equation of motion can be obtained from the

action

S =

∫
d4x
√
−g
{
−1

2
(∇ψ)2 − U(ψ) + εF [ψ, (∇ψ)2, U ′(ψ)]

}
. (E.7)

Finally we rewrite this action in terms of φ using the change of variable (E.6). The

result is

S =

∫
d4x
√
−g
{
− 1

2
(∇φ)2 − U(φ) + εF [φ, (∇φ)2, U ′(φ)]

+ ε[�φ− U ′(φ)]F,L[φ, (∇φ)2, U ′(φ)]
}
. (E.8)

Note that although this action contains second-order derivatives, the corresponding

equations of motion contain derivatives only up to second order, that is, the theory is

no longer a “higher derivative” theory [97]. The final, reduced-order action (E.8) is of

the form (E.2) claimed above.

The final result (E.8) shows explicitly that the method of reducing order directly in

the action used in Refs. [83, 86] is not correct. Applying this procedure to the action

(E.1) would yield the first three terms in the action (E.8), but not the fourth term.

2 Method of Integrating Out the Additional Fields

We next show that the same result (E.8) can be obtained by integrating out the new

degrees of freedom that are associated with the higher derivative terms. Starting from

the action (E.1), we introduce an auxiliary scalar field ψ and consider the action

S[φ, ψ] =

∫
d4x
√
−g
{
− 1

2
(∇φ)2 − U(φ) + εF [φ, (∇φ)2, ψ]

+ ε(�φ− ψ)F,L[φ, (∇ψ)2, ψ].
}
, (E.9)
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The equation of motion for ψ from this action is ψ = �φ, assuming F,LL 6= 0, and

substituting this back into the action (E.9) yields the action (E.1). Thus the two

actions are equivalent classically.

We now proceed to integrate out the field ψ, at tree level, i.e., classically. The

equation of motion for φ is ψ = U ′(φ) +O(ε), and substituting this back the action

(E.9) gives the same result (E.8) as was obtained from the reduction of order method.

3 Field Redefinition Method

We next turn to a discussion of the method we use to eliminate higher derivative terms

in Section 4.3, using perturbative field redefinitions. That method is not generally

applicable, but when it can be used, it is equivalent to the method of reduction of

order (steps 1-3 above), as we now show. We start with an action of the form (E.1),

with the function F chosen to be of the form

F (φ,K,L) = g(φ,K) + [L− U ′(φ)]h(φ,K,L), (E.10)

for some functions g and h. This is the most general form of F for which the field

redefinition method can be used to eliminate the higher derivatives, and is sufficiently

general to encompass the cases used in the work presented here. First, we apply the

reduction of order method. Inserting the formula (E.10) into Eq. (E.2) shows that the

reduced-order action is characterized by the function F̂ given by

F̂ (φ,K,L) = g(φ,K) + [L− U ′(φ)]h[φ,K,U ′(φ)]. (E.11)

However, the same result is obtained by starting with the action given by Eqs. (E.1)

and (E.10) and performing the field redefinition

φ→ φ+ εh[φ, (∇φ)2, U ′(φ)]− εh[φ, (∇φ)2,�φ]. (E.12)
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This shows the reduction of order and field redefinition methods are equivalent.

We now give a more general and abstract argument for the equivalence, valid for

any field content. Suppose we have a theory containing higher-derivative terms in

the action, proportional to ε. Suppose that we can find a linearized field redefinition,

involving higher derivatives, that has the effect of eliminating all higher derivative

terms from the action. We can then consider this process in reverse: starting from

a theory which is not higher derivative, by making a linearized field redefinition we

obtain another theory which has higher derivative terms, proportional to ε. However,

the change in the action induced by the field redefinition must be proportional to

the equations of motion. Hence, these higher derivative terms will be eliminated by

applying Weinberg’s method of substituting the zeroth-order equations of motion into

the O(ε) terms in the action. As we have discussed, Weinberg’s procedure is valid up

to a field redefinition of the type (E.6) which does not change the differential order.
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Appendix F

Comparison with Previous Work

In this appendix we compare our analysis and results in Chapter 4 to those of Park,

Watson and Zurek [86], who perform a similar computation with similar motivation,

but obtain a somewhat different final result [Eq. (1) of their paper]. The main

differences that arise are:

• They work throughout in the Jordan frame, whereas we work in the Einstein

frame. This is a minor difference which only affects the appearance of the

computations and results, since it is always possible to translate from one frame

to another.

• As discussed in the introduction and in Appendix E, they use Weinberg’s method

of eliminating the higher derivative terms, consisting of substituting the zeroth-

order equations of motion into the higher derivative terms in the action, whereas

we use the field redefinition method. The two methods are not equivalent for a

given specific theory with specific coefficients, but are equivalent for the purpose

of determining a general class of theories.

• After eliminating higher derivative terms, their result is an action [Eq. (5) of their

paper] that contains eleven functions of the scalar field, whereas our corresponding

result (4.4.6) has only nine free functions. However, this is a minor difference: their

function Z(φ) can be eliminated by redefining the scalar field to attain canonical
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normalization, and their function f(φ) can be eliminated by the transformation

used in step 7 in Section 4.4.I above.

• Another minor difference is that in their analysis they have in their action a Weyl

squared term ∝ CαβγδC
αβγδ, which is unaffected by any of the transformation

they make to the action. This Weyl squared term gives rise to higher derivative

terms in the equation of motion that are associated with ghost-like additional

degrees of freedom [117]. In our analysis the Weyl squared term is replaced by

the Gauss-Bonnet term, which is not a higher derivative term, because it would

be a topological term if it were not for the φ-dependent prefactor.

• Aside from the above minor differences, our result (4.4.5) is equivalent to the

result given in Eq. (5) of their paper. Two major differences arise subsequently in

the estimates of the scalings for the coefficients of the operators in the Lagrangian.

First, Park et al. use the standard effective theory scaling rule wherein an

operator of dimension 4 + n has a coefficient ∼ Λ−n, where Λ is the cutoff. As

discussed in Section 4.5.I above, this corresponds to placing no restrictions on

the theory that applies above the cutoff scale Λ. By contrast, our approach does

place restrictions on the physics at scales above Λ, and yields the modified scaling

rule (4.5.5). As a consequence, our cutoff Λ (which we denote by M in our work)

can be taken all the way down to the Hubble scale H0 ∼ 10−33 eV, whereas their

cutoff must be larger than ∼
√
H0mP ∼ 10−3 eV.

Second, Park et al. actually assume separate cutoffs for the gravitational, matter

and scalar sectors of the theory, and estimate how each of their coefficients scale

as functions of these three cutoffs. We do not understand completely their method

of derivation of these scalings, but we do note that some of their scaling estimates

are inconsistent with how the coefficients transform into one another under field

redefinitions as discussed in Section 4.3 above. They then proceed to drop some

terms which their scalings indicate are subdominant, and arrive at a final action
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[Eq. (1) in their paper] which differs from ours, being parameterized by three free

functions rather than nine.
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Appendix G

Equations of Motion for

Reduced Theory

In this appendix we compute the equations of motion for the final action in Chapter

4, given by Eq. (4.4.5), with the e1 and e2 terms omitted. We start by using a

transformation of the form (4.3.2) with β̃2 = −2e−2αb2. This yields the action

S =

∫
d4x
√
−g
{
m2
p

2
R− 1

2
(∇φ)2 − U(φ) + a1(∇φ)4 + c1G

µν∇µφ∇νφ

+d3

(
R2 − 4RµνRµν +RµνσρR

µνσρ
)

+ d4ε
µνλρC αβ

µν Cλραβ
}

+ Sm

[
eα(φ)gµν

(
1 + β(∇φ)2

)
, ψm

]
. (G.1)

Here we have defined β = 2e−2αb2; this was denoted β2 in Chapter 4. We have also

set ε = 1 for simplicity. The representation (G.1) is more convenient than (4.4.5) for

computing the equations of motion since it avoids varying of the stress-energy tensor.

Next, we vary the matter action in Eq. (G.1) using the definition (0.0.2) of the

stress energy tensor Tµν and the definition (4.2.4) of the Jordan metric ḡµν . This

yields

δSm = −1

2

∫
d4x
√
−ge2α

{
δgµν

[
Tµν + 2Tµνβ(∇φ)2 − βT∇µφ∇νφ

]
+δφ

[
−α′T + 2α′βT (∇φ)2 + β′T (∇φ)2 + 2β∇µT∇µφ+ 2βT�φ

]}
.

(G.2)
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Combining this with the variation of the gravitational action gives the equations of

motion

�φ = U ′(φ)− 1

2
e2αα′T + 4a1

[
(∇φ)2�φ+ 2∇µ∇νφ∇µφ∇νφ

]
+ 3a′1(∇φ)4

+ c′1G
µν∇µφ∇νφ+ 2c1G

µν∇µ∇νφ− d′3
(
R2 − 4RµνRµν +RµνσρR

µνσρ
)

− d′4εµνλρC αβ
µν Cλραβ

+
1

2
e2α
[
2α′βT (∇φ)2 + β′T (∇φ)2 + 2β∇µT∇µφ+ 2βT�φ

]
, (G.3)

and

m2
pGµν = e2αTµν +∇µφ∇νφ−

[
1

2
(∇φ)2 + U(φ)

]
gµν − 4a1(∇φ)2∇µφ∇νφ

+ a1(∇φ)4gµν + gµνc1G
σλ∇σφ∇λφ− 4c1Rσ(µ∇ν)φ∇σφ+ c1Rµν(∇φ)2

+ c1R∇µφ∇νφ− gµν∇σ∇λ(c1∇σφ∇λφ) + gµν�[c1(∇φ)2]

+ 2∇λ∇(µ(c1∇ν)φ∇λφ)−∇µ∇ν [c1(∇φ)2]−�(c1∇µφ∇νφ)

+ 2R∇µ∇νd3 − 2gµνR�d3 + 4Rµν�d3 − 8Rσ
(µ∇ν)∇σd3

+ 4gµνRσρ∇σ∇ρd3 + 4Rρµνσ∇ρ∇σd3 + 16Cµν + 2e2αTµνβ(∇φ)2

− e2αβT∇µφ∇νφ. (G.4)

Here the tensor Cµν comes from the Chern-Simons term, and is defined by

Cµν = (∇σd4)εσλρ(µ∇ρR
ν)
λ + (∇σ∇λd4) R? λ(µν)σ (G.5)

where R? µνσλ = εσλρτRµν
ρτ/2. Note that the zeroth-order terms involving the stress-

energy tensor depend implicitly on β through the expression for the Jordan metric

given in Eq. (G.1).

The terms involving c1 are written in the most compact manner we could find.

Although it looks unlikely, the higher-order derivatives in these terms do cancel; the
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full expansion of these terms is

2c1gµνR
σλ∇σφ∇λφ−

1

2
c1gµνR(∇φ)2 − 4c1Rσ(µ∇ν)φ∇σφ+ c1Rµν(∇φ)2

+ gµν
[
c′1∇σφ∇λφ∇σ∇λφ+ c1∇σ∇λφ∇σ∇λφ− c′1(∇φ)2�φ− c1(�φ)2

]
− 2c1∇σ∇µφ∇σ∇νφ− 2c′1∇σφ∇(µφ∇ν)∇σφ+ c′1∇µ∇νφ(∇φ)2 + c′1∇µφ∇νφ�φ

+ 2c1∇µ∇νφ�φ+ 2c1∇λφ∇σφRσµνλ + c1R∇µφ∇νφ. (G.6)
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Appendix H

Scaling of Coefficients Obtained

by Integrating Out

Pseudo-Nambu-Goldstone Fields

In this appendix we give some more details of the derivation discussed in Section 4.5.I

of the scaling of the coefficients of the operators in the Lagrangian. We divide the

pNGB fields ΦA into two groups, a set χa with mass ∼ H0 and a set ψΓ with mass

∼M , where M � H0:

ΦA = (χa, ψΓ). (H.1)

We assume an action for these fields of the form

S =

∫
d4x
√
−g
{

1

2
R− 1

2
qAB(ΦA)∇µΦA∇νΦ

Bgµν −H2
0V

(
χa,

M

H0

ψΓ

)}
. (H.2)

This is the same as the action (4.5.3) of Section 4.5.I above, except that an extra factor

has been inserted into the potential to make the ψΓ fields have mass ∼M rather than

∼ H0, and we have specialized to units where mP = 1. We assume that the target

space coordinates have been chosen so that the potential is minimized at ψΓ = 0, i.e.

V,Γ = 0 (H.3)

at ψΓ = 0.
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We now want to let M become large and integrate out the fields ψΓ at tree level.

This can be done by using Feynman diagrams and using power counting1, as in Ref.

[84]. Alternatively and more simply, it can be done by writing out the equations of

motion for the fields ψΓ and invoking an adiabatic approximation. At zeroth order

in 1/M , the theory obtained for the fields χa is a nonlinear sigma model where the

potential is just the potential of the action (H.2) evaluated on the surface ψΓ = 0, and

the target space metric is just the metric induced on the surface from the metric qAB.

To obtain the higher-order corrections we can proceed as follows. The equation of

motion for the fields ψΓ is

�ψΣ + ΓΣ
ab
~∇χa · ~∇χb + ΓΣ

ΘΥ
~∇ψΘ · ~∇ψΥ + 2ΓΣ

aΘ
~∇χa · ~∇ψΘ

= H2
0q

ΣaV,a +H0MqΣΘV,Θ. (H.4)

Here the connection coefficients are those of the target space metric qAB. We next

expand this equation to linear order in ψΓ and use the condition (H.3) to obtain

�ψΣ +
[
ΓΣ
ab,Θ

~∇χa · ~∇χb −H2
0q

Σa
,ΘV,a −M2qΣΥV,ΥΘ

]
ψΘ

+2ΓΣ
aΘ
~∇χa · ~∇ψΘ = −ΓΣ

ab
~∇χa · ~∇χb +H2

0q
ΣaV,a, (H.5)

where all the metric coefficients, connection coefficients and their derivatives are

evaluated at ψΓ = 0. Now in the large M or adiabatic limit, the dominant term on

the left hand side will be the term proportional to M2, and dropping the other terms

gives a simple algebraic equation for the leading order contribution to ψΓ:

[
qΣΥV,ΥΘ

]
ψΘ =

1

M2

[
ΓΣ
ab
~∇χa · ~∇χb −H2

0q
ΣaV,a

]
. (H.6)

1We note that Burgess et al. [84] write down a scaling rule in their Eqs. (2.3) and
(2.5) which is identical to our scaling rule (4.5.5) except that it is suppressed by an
overall factor of M2/m2

P for d > 2, where d is the number of derivatives. They say in
their footnote 2 that this rule comes from integrating out a pNGB field of mass M .
However we find that the detailed power counting calculations given in the second
example in their Section 2.2 actually yield our scaling rule rather than theirs.
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Substituting the solution given by Eq. (H.6) into the action (H.2) gives the required,

O(1/M2) corrections to the action. The first term on the right hand side of Eq. (H.6)

will give nonlinear corrections to the kinetic energy. (We assume that the second

fundamental form or extrinsic curvature of the surface ψΓ = 0 is nonzero, otherwise

these corrections would vanish.)

As a simple example, consider the theory

L = −1

2
(∇χ)2 − 1

2
(∇ψ)2 − 1

2
M2ψ2 + ψ(∇χ)2/mP . (H.7)

The equation of motion for ψ is �ψ −M2ψ = (∇χ)2/mP with leading order solution

ψ = −(∇χ)2/(mPM
2). The corresponding corrections to the action for χ scale as

(∇χ)4/(m2
PM

2), in agreement with Eq. (4.5.5). The scaling (4.5.5) of other operators

can be derived similarly.
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