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1 Overview

Special relativity is a subject that has (in my opinion) often been taught poorly in undergraduate physics,
using confusing notation and math, and I think that this more than anything else has contributed to its
reputation as a difficult subject. However, at heart, it’s really quite a beautiful subject. It has simple but
surprisingly profound concepts, and those lead to some rather counterintuitive results. I’ll let you in on two
secrets. The first is that I can’t do special relativity using the math that I was taught when I first learned the
subject. The second is that there is a better way! That’s why I asked to teach this – because I want to teach
you how to use some powerful tools that really bring out the beauty of the theory. Relativity has become the
zeitgeist of modern high energy physics, astrophysics, and cosmology, and to me is one of the most amazing
pieces of physics that we have. I hope to share that excitement with you, introduce a formalism that really
simplifies everything, and show a little of its application.

These notes are the companion notes for a three lecture mini-series on special relativity. Their aim is to
complement what is seen in lectures and provide a few more details, mainly because I don’t know a good
textbook on the subject. However, these notes should not be viewed as a rigorous derivation of all the
formulas here, though I will try to point out when I’m being excessively hand-wavy. My primary objective
is to provide you with a first immersion in some deeper aspects of special relativity; I don’t expect you to
memorize all of the equations here. My hope is that the next time you encounter special relativity, these
notes will provide a useful reference for you to build upon.

1.1 Prerequisites

These notes assume that you are familiar with the basic concepts of special relativity. I don’t assume that
you remember any of the math involved with it, and indeed, I intend to show you a beautiful mathematical
formalism for simplifying all of the ugly math that your first introduction to special relativity probably
entailed. However, I assume that you have come across the following ideas: Events, Length Contraction,
Time Dilation, the γ Factor, Lorentz Transformations, Proper Time, the Addition of Relativistic Velocities,
and Relativistic Energy and Momentum. If you haven’t seen these ideas before, you will need to read up on
them before we start.

1.2 Learning Outcomes

By the end of this mini-series, you should be able to:

• Manipulate index notation

• Lorentz transform scalar, vector, and tensor quantities

• Lorentz transform the Electromagnetic field
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1.3 How to use this document

I will cover most of the material in this document in the lectures. Yes, that will make for a fairly rapid pace.
As I said above, I don’t expect you to understand all of it in detail. What I really want you to understand
is what I have described in the Learning Outcomes above. Essentially, I want you to really understand two
things: component notation and Lorentz transformations. I’m going to show you how electromagnetism
works in special relativity, but I don’t expect you to be able to derive it. I’ll go through the derivation, and
at the end, I’ll give you some equations. What I want you to be able to do is to use those equations with
the presented notation, and perform Lorentz transformations on them. You’ll see a lot of formulas regarding
electromagnetism in this mini-course, and it’s ok if you don’t understand them at this point. You’re going
to spend the rest of this course going over them in fine detail.

I suggest that you read these notes at least once. Hopefully after you’ve seen the lectures, most of it will
make sense. You may like to print off a copy and bring them to lectures to annotate. Scattered throughout
these notes are simple exercises for you to do to make sure you understand what is going on – they should
only be about 3 lines of math. At the end of this document, there is a problem set for you to really engage
with this material.

Good luck, and have fun!

2 Rotations

Fundamentally, special relativity is based on the idea that what we see as space and time may be different
to what somebody else sees, depending on how fast we are traveling relative to each other. It turns out that
to transform between reference frames, all you need to do is rotate, but in a special way. We’ll start with
rotations in three dimensions, before expanding to consider an abstract rotation in four dimensions.

I’m going to start in three-dimensional Euclidean space. That’s normal three-dimensional space, with no
time dimension. Most of this should be familiar to you, but the notation I’m going to use will probably be
new. Consider a vector in this space, like r. If we were to write it out completely, we’d say r = xx̂+ yŷ+ zẑ.
Or, you could write it like

r =

 x
y
z

 (1)

as a column vector. It could be a position vector, a velocity vector, a force vector, it doesn’t matter – they’re
all just vectors in our space.

I’d like to consider rotating this vector. There are two ways to think about this. The first is that we
actually change the vector. That is, we pick it up and swing it around so that it points in a different
direction. That’s probably what you think of when you think of a rotation. However, there is a second way
to think about this manipulation. We could also be rotating ourselves (as well as our coordinate system),
and needing to update our coordinates for the vector because our axes have been rotated. This is the way
that I want you to think of rotations in this context – changing reference frames.

Now, one of the things you may have seen in linear algebra is that you can rotate a column vector by
applying a matrix to it. As I discussed above though, I’m not going to rotate my column vector, what I want
to rotate is the coordinate system that I’m using. I’m going to turn myself around an axis by some angle,
and then ask “If I set up my new coordinate system in exactly the same way relative to myself as before I
rotated, what are the coordinates on that vector?” Here’s an example of a rotation around the z-axis:

r′ =

 cos θ sin θ 0
− sin θ cos θ 0

0 0 1

 x
y
z

 (2)

Here, we rotate by θ about the z-axis in a counterclockwise direction (assuming we’re looking “down” on
the xy plane), and end up with a new vector, r′, which describes the vector in my new coordinate system.
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Vectors, like r, need to transform if we change our coordinate system. You should be fairly happy with these
statements so far. There are three axes that we can rotate around, and so for you mathematicians out there,
this forms the SO(3) rotation group.

Now consider the quantity r · r. How does this transform? I leave it as an exercise for you to show that
if we transform r to r′, we will find that

r · r = r′ · r′. (3)

This happens because r · r is a scalar quantity. You probably know that a scalar is a number, unlike a
vector, which has magnitude and direction. Consider the following question: is a component of a vector a
scalar? It’s just a number, after all. The answer is, surprisingly enough, no. There is more to being a scalar
than just being a number! The extra property that describes a scalar is that it doesn’t transform under a
rotation. If you think about the rotation of our quantity r ·r physically, that’s kind of obvious – the length of
your vector doesn’t change if you rotate it, it just points to a different position on the same sphere, centered
on the origin. However, the x component of the vector r does change when you rotate it, and so it is not a
scalar quantity. We’ll discuss this property of scalars in some detail later on.

I’m going to introduce some new notation here. Instead of referring to the entire vector r, it turns out
to be really useful to refer to its components, ri. Here, i could be x, y, or z. To calculate r · r, we’ll write
it as

∑
i,j r

irjδij , where δij is the Kronecker delta, which is 1 if i = j, and 0 if i 6= j. Let’s write that out
completely.

r · r = rxrx + ryry + rzrz (4)

=
∑
i

riri (5)

=
∑
i,j

rirjδij (6)

= rirjδij (7)

You may be wondering how I got to that last line. In relativity, summations over all the components of an
expression are so common, that it quickly becomes tedious to write out all the summation signs. So, in the
last line, I have introduced a convention called the Einstein Summation Convention, where repeated indices
(i and j here) are summed over. Any index that appears once as a raised index and once as a lowered index
has an implicit summation out the front, which runs over all of the coordinates.

We call δij the metric on Euclidean space. It tells us how to take the dot product of vectors in a coordinate
system. (It also does a whole lot of other things, but we’ll get to them later.)

Now, note that when we did our rotation above, we used a matrix. We can write a matrix in component
form, too. Note that we wrote our vectors (column vectors) with raised indices. It turns out to be really
convenient if we write a row vector as a vector with lowered indices. Then, a matrix is going to have one
raised and one lowered index. Let’s write the rotation matrix above as Ri

′

i, where the raised index tells
us which row we’re on, and the lowered index tells us which column we’re on. Then, we can write our
transformed vector as the following:

ri
′

= Ri
′

ir
i (8)

where again, we’ve used the Einstein summation convention (summing over i).

Ok, let’s keep on going with this notation, and see what we can find out about rotations. Firstly, we
should figure out how to rotate a row vector. Say we have a row vector, ri. How do we rotate it? Well, let’s
consider the quantity (Rr)T . From linear algebra, we know that this is equal to

(Rr)T = rTRT (9)

The column vector becomes a row vector, and our rotation matrix becomes transposed. However, because
our rotation matrix is an orthogonal matrix, its transpose is equal to its inverse, and so we have

(Rr)T = rTR−1. (10)
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Thus, we find that we need to use the inverse rotation matrix to transform row vectors!

ri′ = Rii′ri (11)

Take note of the notation I’m using here. Ri
′

i is a rotation matrix, and Rii′ is its inverse. I’ll typically use
primes to denote coordinates in a different reference frame, and so by their position in our matrix, you can
tell if we’re using the rotation matrix or its inverse.

What happens when a matrix multiplies its inverse? We have to get the identity matrix, because we’re
just unrotating the rotation.

Rii′R
i′

j = δij (12)

Here, δij is a representation of the identity matrix. Again, Einstein Summation Convention is employed.

Ok, let’s look at the metric now. The metric tells us how to take dot products of vectors. However,
it only knows how to take dot products of vectors in our original frame. We’ll need to tell it what the x
coordinate looks like in the new coordinate system! Well, the metric has two lowered indices, so we’ll guess
that both indices need to be rotated. Indeed, that is how it is done, and we can write

δi′j′ = δijR
i
i′R

j
j′ . (13)

(For those of you who remember your linear algebra, if we write the metric as a matrix, we’re doing a unitary
transformation on the matrix.) It turns out that the new metric is exactly the same as the old metric, which
is kind of special, but exactly what we would expect from rotating our reference frame – the coordinate
system is still Cartesian, so it should be exactly the same.

Now, let’s see something special. Remember r · r? Let’s show that it doesn’t change if you perform a
rotation. Here, we need to rotate all three quantities properly (two vectors and the metric).

r′ · r′ = ri
′
rj

′
δi′j′ (14)

= Ri
′

ir
iRj

′

jr
jδklR

k
i′R

l
j′ (15)

=
(
Rki′R

i′

i

)(
Rlj′R

j′

j

)
rirjδkl (16)

= δki δ
l
jr
irjδkl (17)

= rirjδij (18)

= r · r (19)

Note on the second line, we needed more letters for all of the indices, so I had to switch to using k and l.
That’s ok; they’re only dummy indices anyway, just like in integration (you can call them whatever you want).
Because we’re using this component notation, we don’t need to worry about matrix multiplication rules – all
of the indices line up just the way they should. On the fourth line, we get some identity matrices (confusingly,
also called Kronecker deltas). These identity matrices are really easy to use – they just substitute in one
index for another, like δijr

j = ri, and above, we used them on the metric. Using this component notation,
we see that the length of a vector doesn’t change under a rotation.

So far, we’ve considered ordinary rotations (“rotations on the sphere”), keeping r2 = x2+y2+z2 constant.
What we would like to consider is “rotations on the hyperboloid”, keeping s2 = −t2 +x2 + y2 + z2 constant,
where I’ve suggestively called our new coordinate t. What is different between s2 and r2? We can write
s2 = −t2+r2, so we’ve got a four-dimensional space, and we’ve got a funny negative sign on the t component
when we square s. If we write sµ as a vector, we’ll have sµ = (t, x, y, z), or sµ = (t, r) for short. Keep in
mind that sµ will be a column vector, but I’ve just written it like this because it’s quicker and easier, and you
know it’s a column vector because of the raised index. I’m using Greek indices for four dimensions instead
of Roman indices, which I will only use for spatial indices. We’ll let 0 be the t component in our component
notation.

When we calculate s2, we’re going to need a four-dimensional metric to take the dot product, and it
won’t just be a four-dimensional Kronecker delta, because of that minus sign. We can write as before,

s2 = gµνs
µsν (20)
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where our metric here, which we call gµν , is a diagonal metric, with entries (−1, 1, 1, 1) on the diagonals.
This is called the Minkowski metric. (Note that a lot of books will use (1,−1,−1− 1) instead; this is just a
choice of convention. Don’t be confused!)

Now, let’s think of the transformations that will keep s2 invariant. Obviously, anything that will keep
r2 invariant and doesn’t change the t component will also leave s2 invariant. Here’s an example. I call it Λ
instead of R, because it’s in four dimensions, and we should keep them separate. This is a normal rotation
matrix on the appropriate space coordinates, just like before.

Λµ
′

µ =


1 0 0 0
0 cos θ sin θ 0
0 − sin θ cos θ 0
0 0 0 1

 (21)

Like the previous matrix, this just represents a rotation around the z axis. We can do similar transformations
for the x and y axes. If we want to transform our vector (now a four-dimensional vector, or four-vector), we
write sµ

′
= Λµ

′

µs
µ. Try it – you’ll see that the rotation is performed, just as expected.

Ok, but how do we rotate in the t dimension when the metric has a minus sign? We can consider a
simpler problem in just two coordinates, t and x. What transformation leaves −t2 +x2 invariant? The curve
−t2 + x2 = C describes a hyperbola. To rotate from one point on the hyperbola to another, we can use a
hyperbolic transformation. (

t′

x′

)
=

(
cosh η − sinh η
− sinh η cosh η

)(
t
x

)
(22)

As an exercise, check to see that −t2 + x2 = −t′2 + x′2.

Back in four dimensions, we do exactly the same thing, but generalize it a little bit. Here’s exactly the
same rotation matrix, just in four dimensions.

Λµ
′

µ =


cosh η − sinh η 0 0
− sinh η cosh η 0 0

0 0 1 0
0 0 0 1

 (23)

This is a rotation in the tx plane in Minkowski space. You should be able to guess what the rotations in
the ty and tz planes look like. We now have three normal rotations, and three special rotations into time.
For you mathematicians, this enhanced rotation group is called SO(3, 1) because of that minus sign in the
metric (if it was four +1s, then the rotation group would be SO(4)). So, we now know what the six rotations
look like in Minkowski space.

Now that we’ve developed this machinery, what can we do with it? Let’s see some physics!

3 Lorentz Transformations

The amazing insight of Einstein was to realize that space and time were linked. You should have seen
previously that they kind of merge together when you perform a Lorentz transformation. What we would
like to do is to describe all of this using our machinery from above.

You should be familiar with the concept of an event, a location in space and time (often described in
some particular reference frame). We’ll call it xµ, where µ can be either t, x, y, or z. Often, we’ll let t = 0,
x = 1, y = 2, and z = 3, just to make summation easier. If we were to write out all of the components of an
event, it would look something like the following: xµ = (t, x, y, z). Note that this is a vector – we’re giving
it a raised index, and we would write it as a column if we wrote it out in full. Now, here’s a slight difficulty.
The components of xµ have different units! We really can’t have that, so we multiply the t by the speed
of light, c, to restore the units to what we want them to be. The speed of light is, after all, the same in
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all reference frames by one of the postulates of special relativity1. However, it gets really annoying to bring
that c along, so we’re going to set c = 1. If you ever want to restore c, just use dimensional analysis. If this
seems strange, you may want to look up the Buckingham Pi theorem, which justifies doing this.

You may have come across the concept of the Lorentz invariant s2 = −t2 + x2 + y2 + z2 in a previous
special relativity course. If not, that’s ok. The idea of this invariant is that it’s the same thing in all reference
frames, and we saw the rotations that preserve it in the previous section. It turns out that those rotations
in Minkowski space from the previous section are just Lorentz transformations in disguise!

Let’s see how this works. Recall this Lorentz transformation that we had above.

Λµ
′

µ =


cosh η − sinh η 0 0
− sinh η cosh η 0 0

0 0 1 0
0 0 0 1

 (24)

If we want to translate our event to a different reference frame, we’d write xµ
′

= Λµ
′

µx
µ. To figure out what

the transformation is doing, let’s look at a particular event, xµ = (t, 0, 0, 0). In the new reference frame,
you should find that xµ′ = (t cosh η,−t sinh η, 0, 0). This describes a reference frame that is traveling along
the x axis at a velocity greater than zero (for positive η) compared to our original frame. We can tell this
because what we see as the spatial origin, they see as a point receding into the negative x direction. This
is an important point, and we did some physics thinking to find it. Make sure you can work this out by
yourself. We call this transformation a boost in the x direction.

The parameter η is called the rapidity of the transformation. We can restore this to looking like a normal
Lorentz transformation in terms of a velocity v by letting

γ = cosh η (25)

vγ = sinh η (26)

v = tanh η (27)

where v is the boost velocity in the x direction, and γ = 1/
√

1− v2. This would give us

Λµ
′

µ =


γ −vγ 0 0
−vγ γ 0 0

0 0 1 0
0 0 0 1

 (28)

as you should recognize. (If not, try acting this Lorentz transformation on the event vector xµ.) Note that
inserting a negative η gives you a boost in the −x direction.

So, we now have an idea about how to transform events into different reference frames – we use Lorentz
transformations, which are just rotations in disguise. Now, we want to understand how our Lorentz trans-
formations work a little better.

In direct analogy to our three-dimensional case above, we find that we have to transform row vectors
using the inverse Lorentz transformation:

xµ′ = Λµµ′xµ. (29)

The Lorentz transformation, multiplied by the inverse Lorentz transformation, has to give us back the
identity matrix by definition, and so we have

Λµµ′Λ
µ′

ν = δµν . (30)

This makes sense, because if we boost forwards, and then boost backwards, we should end up with what we
started with. Finally, if we act on the metric with a Lorentz transformation, we need to do the same thing
that we did for the metric in Euclidean space – transform both of the lowered indices.

gµ′ν′ = Λµµ′Λ
ν
ν′gµν (31)

1Einstein originally postulated special relativity in this way. However, you can actually show that it is sufficient to require
that physics behaves the same way in all directions, at all points in spacetime, for all observers in inertial reference frames.
This extra “postulate” will come out of these requirements.
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Again, as you will find if you calculate it out, the metric doesn’t change under Lorentz transformations.
This is one of the defining postulates of special relativity: that the equations of physics are the same in
all directions, in all reference frames. Thus, we expect that the metric doesn’t change under a Lorentz
transformation.

Ok, we’ve stated that s2 is invariant under a Lorentz transformation, but I’d like you to derive it yourself,
using our component notation, and the properties of the Lorentz transformations that we’ve described. You
can follow exactly the same work as we did for the rotation of r above. What you want to show is that

s2 = xµxνgµν = xµ
′
xν

′
gµ′ν′ (32)

for any two reference frames. Good luck!

4 Velocity

We should be able to get a velocity vector by differentiating xµ with respect to time, so let’s give that a try.

We need to be really careful when we differentiate with respect to time. What we want to do is to say
that t, x, y and z are functions of some parameter (called an affine parameter, in case you were curious),
and differentiate with respect to that parameter. However, we want that parameter to be time, except that
not everybody agrees on the same definition of the time coordinate t. The parameter that makes the most
sense to use is called proper time. Proper time is the time that an observer in their own frame measures. If
I’m looking at you in a different rest frame, then your time will be passing at a different rate compared to
my time. This is the famous time dilation. The relationship (which I’m not going to derive, but you can do
so using Lorentz transformations if you so desire) is the following:

t = τγ. (33)

Here, t is my coordinate time. τ (always used for proper time) is your proper time, and γ is the gamma
function for the velocity at which you’re traveling. Now that we have that, we can calculate the four-velocity.

vµ =
dxµ

dτ
(34)

=

(
dt

dτ
,
dx

dτ
,
dy

dτ
,
dz

dτ

)
(35)

=
dt

dτ

(
1,
dx

dt
,
dy

dt
,
dz

dt

)
(36)

= γ (1,v) (37)

In the third line, we took out a factor of dt/dτ , and used the chain rule for the x, y and z components. In
the fourth line, we used our above expression to find dt/dτ , and we also introduced the three-velocity, v.
Note that this makes sense; we want the three-velocity to somehow be involved in how fast we observe the
event to be moving.

Having defined our velocity now, we can calculate: what is the magnitude of the four-velocity?

v2 = vµvνgµν (38)

= (−1 + v2)γ2 (39)

= − 1 (40)

= − c2 (41)

In the last line, I reintroduce the factor of the speed of light just for clarity. We see a few rather unusual
things here. The first is that because of our choice of metric (called the signature of the metric), a quantity
squared can be negative. That’s ok, because we’re not in Euclidean space any more, Dorothy. The second
unusual thing we see is that v2 is a constant, −c2! This implies to us that whatever our four-velocity is,
we’re “moving” through spacetime at the speed of light!
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What happens to our velocity four-vector when we transform to another reference frame? Just as in
three dimensions, our rotation matrices could be used to rotate any vector, in four dimensions, Lorentz
transformations can be used to transform any four-vector.

vµ
′

= Λµ
′

µv
µ (42)

Be careful now, there are two velocities in this statement. One is the velocity of our original vector, and
the other is the velocity of the new frame. If you do the calculation, you’ll find the relativistic addition of
velocity formula that you should be familiar with. If you’re like me, the derivation for this using old notation
was somewhat akin to black magic. The fact that we get relativistic addition of velocity just out of our
notation should help you appreciate the power of this formalism2.

There’s one more thing to note that’s important about v2. Note that it doesn’t depend on what frame
we’re in. That’s because it’s a scalar, which doesn’t change under Lorentz transformations, just like r2 in
Euclidean space.

5 Tensors

The word “tensor” has a stigma attached to it, the idea that it’s a difficult concept. It’s a bit more general
than a vector or a matrix, but this doesn’t mean it’s really any harder. In this section, I want to tell you
what a tensor is, and we’ll look at how to Lorentz transform it.

A tensor is a mathematical object that exists without a coordinate system. However, if we want to work
with it, we need to put it into a coordinate system to use it. The tensor is the same object, regardless of
what coordinate system we put it in, but our representation of the tensor will change between coordinate
systems.

See, that wasn’t so bad, was it? Let’s look at some different tensors.

The simplest form of tensor is a scalar. A scalar is special, because it takes on the same value regardless
of what coordinate system it is in. Here’s some examples of a scalar: the number of apples in a box, the
number of electrons in a rock, the total electric charge of the earth. A scalar is just a number that doesn’t
change under coordinate transformations. You’ve come across some examples already. The quantity v2 is a
scalar. The invariant s2 is a scalar. They don’t transform. They’re the same, however you look at them.

Let’s go to the next simplest tensor, a vector. Here’s an example: xµ, the position four-vector. Can you
think of another? What about vµ, the velocity four-vector? When we transform vectors, we need to use a
Lorentz transformation. Exercise: write down the Lorentz transformation for each of these vectors. These
tensors need to transform – they change when we use a different coordinate system. We can also have the
equivalent of a row vector, xµ. This is a tensor too, and we’ve told you above how it transforms. Write that
down, too.

More complicated tensors have more indices, called Lorentz indices. You’ve already met one, the metric
gµν . Remember how we could write that as a 4× 4 matrix? We could have really complicated tensors, like
Tµν ρ

λσ . This one is too ugly to write as a matrix – it would need to be 4× 4× 4× 4× 4! If we have to work
with that many indices, we just write out all of the components individually. The important thing is that
they all transform in exactly the same way under a Lorentz transformation. You need one factor of Λ for
each index, and you need to make sure that you have the correct transformations and inverse transformations
as necessary. So, our example here would transform as

Tµ
′ν′ ρ′

λ′σ′ = Tµν ρ
λσ Λµ

′

µΛν
′

νΛλλ′Λσσ′Λρ
′

ρ. (43)

There are some special tensors that do not change when you transform them. You’ve met two already:
the metric, gµν , and the identity matrix3, δµν .

2Hang on, you might ask, where’s the formula? Well, you can calculate it if you want to. However, I actually don’t so much
care what the formula is; I care that I understand where it comes from. You will derive this formula in the problem set at the
end of these notes.

3It turns out that there are only three tensors that don’t change under Lorentz transformations. We won’t need the third
one here, but I include some details of it in the appendix just to keep you happy.
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You’ve already been using tensors without knowing it, and you already know how to transform tensors.
So don’t let the name intimidate you!

Now that we know about tensors, what can we do with them?

6 Using Tensors

There are a few important things to know about using tensors. The first thing we’d like to do is to relate
column and row vectors. We can form a row vector from a column vector by using the metric:

xµ = gµνx
ν . (44)

We can similarly go the other way, this time using the inverse metric, which as a matrix, is exactly the same
as the metric: it’s diagonal, with entries −1, 1, 1, 1 on the diagonals. This looks like:

xµ = gµνxν . (45)

Actually, we can use the metric to raise or lower any index. For example,

fµν = gµλf
λ
ν . (46)

Given that we can use the metric to raise and lower indices like this, it becomes really important to make
sure that we keep the right indices in the right locations. The metric tensor gµν is symmetric in µ and ν,
but other tensors might not be. What happens when we raise an index on the metric? Go ahead, compute
it. You should find that

gµνgνλ = δµλ . (47)

One of the special things we can do with raising and lowering indices is swap them, as in the following
example.

xµvµ = xµvνgµν = xνv
ν = xµv

µ (48)

In the final step, we just renamed the dummy index of summation. The net result here is that we can swap
a lowered index and a raised index for each other in this manner.

Remember how I said above that a tensor was something that existed without a coordinate system? This
means that if we write a tensor equation down, that’s a relation that the tensors themselves obey, and so
that equation must be true in all coordinate systems. That is a very powerful statement, and we’re going to
exploit it a number of times.

Given that, consider what happens if a tensor is zero: Tµνλ = 0, for example. This could be any
arbitrary tensor, so long as it’s zero in a particular coordinate system. Note that this is a tensor equation:
everything is written in terms of arbitrary spacetime indices, and so we expect the tensor to be vanishing
in all coordinate systems. We can check this explicitly – if the tensor vanishes in one coordinate system,
then we can transform to any other coordinate system by using a series of Lorentz transformations. Only
thing is, they’ll all be multiplying zero, and so the net result will be zero. A tensor that is vanishing in any
coordinate system is vanishing in all coordinate systems. This fact can be really useful!

Another thing that is really useful is scalar quantities. Because a scalar is the same in any coordinate
system, you can calculate a scalar in two separate frames and then compare them. This can be particularly
useful in kinematics problems. A scalar quantity is simply any tensor that doesn’t have any Lorentz indices
on it.

One final bit of terminology before we get back to the physics. When multiplying two tensors together,
we will often say that we “contract” the indices. This simply means that we use the Einstein Summation
Convention on those indices. For example, consider the quantity vµxν . If we contract the indices, we get
vµxµ. This forms a Lorentz scalar, so this quantity will be the same in all reference frames.

9



I’m going to give you one more bit of advice. If ever you’re writing down an equation in terms of this
component notation, you will have “free indices” and “contracted indices”. Free indices are those that are
left over, while contracted indices are those that are summed over with the Einstein Summation Convention.
On each side of the equation, you have to have the same free indices left over. If you don’t, you know that
you’ve made a mistake somewhere.

7 Momentum

Now that we’ve defined four-velocity and we know a little bit about tensors, let’s define momentum. First
of all, we need to define mass. The rest mass of an object is a scalar. It’s a Lorentz invariant. We’ll denote
it m4. Momentum is just mass times velocity, so let’s stick with that. Here is the momentum four-vector.

pµ = mvµ (49)

= (mγ,mγv) (50)

The space components of the four-momentum are the relativistic three-momentum, or p = mγv, kind of
like we would expect. If you remember the expression for relativistic energy, it turns out that the time
component is just that. So, we can also write the four-momentum as

pµ = (E,p) . (51)

Let’s compute p2.

p2 = pµpνgµν (52)

= − E2 + p2 (53)

But, we already know that v2 = −1, and pµ = mvν , and so we have p2 = −m2. This is really important –
remember it! Ok, let’s put those two formulas together.

E2 = p2 +m2 (54)

E2 = p2c2 +m2c4 (55)

In the second line, I reinserted the factors of c, because this formula is pretty iconic. Finally, let’s look at
what happens if a particle is at rest, with zero three-momentum.

E2 = m2c4 (56)

E = mc2 (57)

There we go, we’ve found Einstein’s famous equation: the rest energy of a mass is mc2. Awesome!

What happens if we have a massless particle? We can’t use pµ = mvµ then, because it doesn’t make
sense. But the four-momentum is still well-defined; we still have

pµ = (E,p) . (58)

Because p2 = 0, we then have E = |p|, and a massless particle’s energy is simply determined from it’s
momentum. Now, remember from our definition of the four-momentum, we said that we had E = mγ, and
p = mγv? If we put these two together, we get p = Ev, which holds even as we take the limit of zero mass.
This tells us that |p| = E|v|. Substituting this into the relationship between energy and momentum for a
massless particle, we find that |v| = c. A massless particle has to travel at the speed of light!

Now that we have a four-momentum, what’s it good for? Well, the four-momentum tracks the energy
and the momentum of a particle. If we have multiple particles colliding, they’ll need to conserve energy and
momentum. If we conserve four-momentum, we do both in one go!

4Some authors call it m0, and reserve m for the “relativistic mass”. I don’t like this terminology, because it suggests that
mass increases with velocity, which is a questionable statement at best.
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Ok, so we have four vectors for position, velocity, and momentum. Can we keep on going? What about
a four-acceleration? Perhaps a four-force? As you might expect, you can define them. Are they useful? Not
really, to be honest. I’ve derived four-acceleration before, but it’s a bit of a mess. A four-force is even worse.
And you know what? I’ve never used them in my life. So, we’ll stop there, and not worry about them. We
will actually come to a four-force a little later on, but we’ll leave it for now5.

8 Fields

Now that we’ve seen how to write down stuff for vectors and point particles and so on, we need to talk about
fields. What we would like to do is to create a field at every point in spacetime, similarly to how we do so in
Newtonian mechanics, where we write a field as φ(t,x). Vector fields, such as the electric field, will become
a little more tricky, as we will see shortly. In this section, we’d like to discuss fields, and how they transform
under Lorentz transformations.

Let’s start with a scalar field. This is a field that takes on a value at every point in spacetime. We’ll call
our hypothetical scalar field φ(xµ). This could be something like the number of apples at each spacetime
location. Different observers will all agree on the the number of apples. However, the labels that different
observers put on that spacetime location will vary. In particular, we have

φ(xµ) = φ′
(

Λµ
′

µx
µ
)
. (59)

Because what I see as xµ is what you see as Λµ
′

µx
µ, we need to update our book-keeping to get from φ to

φ′.

The next field to consider is a vector field. Examples could be a velocity field, a momentum field, or as
we shall later see, the electromagnetic potential field. For these, not only do we need to update what label
we use for the event that we’re looking at, we also need to update what direction the field is pointing in.
How do we do that? We use a Lorentz transformation, of course!

vµ(xν) = Λµµ′v
µ′
(

Λν
′

νx
ν
)

(60)

Note that we have to use a Lorentz transformation to update the vµ
′

part, while we have to use the inverse
Lorentz transformation to update the xν part. This is tricky. Go and read that again, and make sure you
understand why it’s happening (look back at how the scalar field transforms if you need a hint). Note that
if we look at the free indices on both sides of the equation, they’re the same. We have different indices on
the arguments, but that’s ok.

We can get more complicated than a vector field, by introducing fields that have more than one index.
We’ll see one of these – the electromagnetic field strength tensor. It looks like Fµν . Can you guess how
this will transform under a Lorentz transformation? We’ll need one Λ for each index, and we’ll also need to
transform the coordinates that we’re looking at.

Fµν(xλ) = Λµ
′

µΛν
′

νFµ′ν′

(
Λλ

′

λx
λ
)

(61)

Does that make sense? Understanding how to transform this tensor is going to be the most important thing
you learn from this part of the course. Yes, that’s right, if you get nothing else out of these notes, make sure
you know how to transform the tensor Fµν .

8.1 Derivatives of Fields

Now that we have some definitions of fields, we’re going to want to differentiate them. Let’s start with a
scalar field, φ(xµ). Say I wanted to know the gradient in the x direction. That would look something like

5I’m not exactly sure why, but it is a common misconception that you cannot deal with accelerations in special relativity.
Special relativity can treat accelerations just fine, although the math tends to become ugly.
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the following.

∂φ(xµ)

∂x
(62)

A better way to write that would be as the partial derivative with respect to x1, which is the x coordinate.

∂φ(xµ)

∂x1
(63)

Even better than that, we could let it be a derivative in an arbitrary direction:

∂φ(xµ)

∂xν
. (64)

This will give us a function with one spacetime index, ν. Should that index be raised or lowered? Let’s work
it out in an example. Let φ(xµ) = xµvµ where vµ is a constant vector. Then we have

∂φ(xµ)

∂xν
=
∂(xµvµ)

∂xν
= vµ

∂xµ

∂xν
. (65)

What is this last strange beast? If you work it out component by component, you should find that it gives
δµν . Thus, our result here would be vν . So, we started with a scalar object, and ended up with a vector
object with a lowered index. Differentiating a field with respect to a spacetime coordinate yields a new field
with an extra lowered index. This is important. Read it again.

In fact, it’s so important, that we give a shortcut to the notation. If we want to take a derivative with
respect to a coordinate, we often write the following:

∂

∂xµ
≡ ∂µ. (66)

This makes it really obvious that we’re adding an extra spacetime index. Can you guess how to Lorentz
transform the derivative of a field? We need to act on the new spacetime index with another Lorentz
transformation. Exercise: Write out the complete Lorentz transformation of the partial derivative of a scalar
field. (Hint: It should be exactly the same as for a vector field with a lowered index!)

There are a couple of subtleties we need to be careful about. The first is the following. What would it
mean to write ∂µ? This always means gµν∂ν , and you should always evaluate it as such. Don’t think about
it as a derivative with regards to a lowered position vector. It will get you confused.

The second subtlety to think about is the following. What is the derivative ∂µxν? Take a moment to
think about how you’d evaluate this. What you should be thinking is that you need to raise the index on x
before you can differentiate, something like this:

∂µxν = ∂µ
(
gνλx

λ
)

= gνλ∂µx
λ = gνλδ

λ
ν = gµν (67)

Note that this works because the metric is not position dependent. So, if you come across a field that is
written with lowered position variables, you’ll need to raise the indices with the metric appropriately to take
derivatives. If you think you can do this, try the following exercise: What is ∂µ(xνxν)?

9 Interlude

You are now armed with all of the knowledge necessary to do absolutely everything in special relativity. At
least, you’ve seen it, and if you continue with physics, you’ll see a lot more of it, and you’ll get a lot more
comfortable with it. If you’ve just read to this point, you’ve done all of the hard stuff, and all we’re going
to do now is apply what you’ve learnt here to electromagnetism. Take a deep breath, and let’s dive in and
have some fun!
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10 Electrostatics

We’ve seen that if we write things down as 4-vectors, then we can use Lorentz transformations to change
coordinate systems really easily. It works for position, velocity, and energy-momentum (usually just called
momentum). Can we do the same thing for the electric field?

The key to constructing the four-vector was to identify an appropriate fourth component. To go with
space, we added time. To go with velocity, we added a normalization condition. To go with momentum, we
added energy. What can go with an electric field, which normally has three components? We need something
that would transform into the electric field and vice-versa under a Lorentz transformation.

We’re at a bit of a loss, alas. It turns out that there is no good four-vector to describe the electric field.
What we instead want to look at is just the electric potential. Is it just a scalar field? Well, sort of. In
three dimensions, it’s a scalar field, and it doesn’t transform under rotations. When you consider rotations
in spacetime though, it many not still be a scalar field – it could be the time component of a four-vector, for
example, and it turns out that that’s what we want. Let’s try the following, and write the electric potential
as the first component in a new four-vector. We’ll call it6 Aµ = (φ,0). Given that we don’t know what to
put for the vector yet, let’s assume that it’s vanishing. Let’s assume that we have a situation where all of our
charges are stationary. We know how everything behaves in electrostatics, so that motivates that anything
that’s in the spatial components is vanishing.

So we’ve defined a four-vector. What next? Well, what we really want to do is relate the electric field
to the potential. Consider the following tensor, which I am just going to pull out of the air. This is the
electromagnetic field strength tensor (and you’ll see why very shortly).

Fµν = ∂µAν − ∂νAµ (68)

If you calculate the four components of this tensor, you should find that F0i = −Ei, where Ei is the
component of the electric field in the i direction (remember to use E = −∇φ, and also remember to lower
the index on Aµ). Note that the electric field is a 3-vector, so it doesn’t really matter if the index is raised
or lowered (remember that the metric in three dimensions is just (1, 1, 1) on the diagonals). You should also
see that Fi0 = Ei. By looking at the definition of Fµν , convince yourself that this makes sense, because F is
antisymmetric in µ and ν by definition.

That’s kind of cute. By writing the potential as the time component of a four-vector, we get the electric
field as the components in a tensor. What about the other components of the tensor? F is vanishing for all
of them. There’s nothing there.

Now, let’s see what our favorite equations look like in this form. What favorite equations, you say? Why,
these ones, of course!

∇ ·E =
ρ

ε0
= 4πρ (69)

∇×E = 0 (70)

Look familiar? They should! Recall that both of these equations come simply from Coulomb’s Law. For the
purposes of special relativity, cgs units are just easier to work with, and so we’ll use that convention here.
Remember that we’re using units where c = 1.

Let’s start with the second of these first. I’m going to claim that the following equation is the one that
we want:

∂γFµν + ∂µFνγ + ∂νFγµ = 0 (71)

There are a lot of equations here – we have three free indices, so it naively looks like there are 64(!) equations
to check. Thankfully, there’s not really that many, and in fact, it is possible to show that there are only four

6The assumption that we should write the electric potential as part of a four-vector is an important one. In physics lingo,
we say that the electromagnetic field is a spin one field. That is, the electromagnetic potential has one Lorentz index. If you
try to do the same thing for gravity, which looks like it behaves exactly the same as electrostatics, you’ll find that you end up
with the wrong answers. This is because gravity is not a spin one field; gravity is a spin two field, and that is the subject of
general relativity.
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independent equations. Let’s look at the equation for γ = x, µ = y, and ν = t.

0 = ∂xFyt + ∂yFtx + ∂tFxy (72)

= ∂xEy − ∂yEx (73)

This should look vaguely familiar. In fact, it’s the ẑ component of ∇×E = 0! Exercise: Find the other two
equations that give the x̂ and ŷ components of ∇×E.

You might be thinking “That’s three equations – what’s the fourth?”. Hold onto that thought for now,
we’ll come back to it. For the moment, that fourth equation just says 0 = 0, which is kind of meaningless.

Ok, so that’s one of our equations of electrostatics. What about the other? Well, we’re going to need to
introduce the charge density, ρ. What happens if we perform a Lorentz transformation on a charge density?
Well, if we just do a rotation, we’ll not really change anything – the charge is still in the same place, etc.
But if we perform a Lorentz boost, then we’ll get a current. So, current and charge should be related in
some way. The current will have a direction, so that should play the role of the spatial component, while
the charge density is directionless, so it can take the time component. Let’s define the current four-vector
Jµ = (ρ,0) for the moment. We’ll get to currents soon.

I’m going to once again pull an equation out of thin air:

∂µF
νµ = 4πJν . (74)

Be careful, fair reader. I have invoked a couple of raised metrics here. (Also be careful on the order of
the indices!) There are four equations here, one for each ν. If ν is spatial (x, y, or z), the right hand side
vanishes, and so we get a strange equation (by combining all three equations):

∂E

∂t
= 0 (75)

This tells us that the electric field is not varying in time. That’s what we expect though, given that we
assumed that we were talking about electrostatics.

If we look at the time component of this equation though, we get something exciting:

∂xEx + ∂yEy + ∂zEz = 4πρ (76)

This is our old friend, ∇ ·E = 4πρ.

So, we’ve done something really quite cute – by writing things in this four-vector notation, we’ve captured
the equations of electrostatics in one neat bundle. The next step is to look at what happens when we Lorentz
transform!

11 Lorentz Transformed Electrostatics

Let’s look at what happens if we Lorentz transform the electromagnetic field strength tensor. Recall the
formula from above to do so:

Fµν(xλ) = Λµ
′

µΛν
′

νFµ′ν′

(
Λλ

′

λx
λ
)

(77)

For the moment, I’m going to assume that we have a constant electric field in all of space, so we can ignore
the spacetime dependence. Next, because we have a constant electric field, we might as well rotate our axes
so that it’s pointing in the x direction. Here is what our electromagnetic field strength tensor looks like (first
index row, second index column):

Fµν =


0 −Ex 0 0
Ex 0 0 0
0 0 0 0
0 0 0 0

 (78)
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What do we get when we transform it? Let’s boost in the y direction, say. Go and do this transformation.
No, really. Go and do it. You can calculate each component individually, or a trick that works here because
so few quantities are nonzero is to write out the following:

Fµ′ν′ = Λ0
µ′Λ1

ν′F01 + Λ1
µ′Λ0

ν′F10 (79)

Evidently, the Λ1
ν′ and similar coefficients will only be nonzero for ν′ = 1, so we can quickly figure out what

the nonzero terms actually are. Here they are in all their glory:

Fµν =


0 −γEx 0 0

γEx 0 −vγEx 0
0 vγEx 0 0
0 0 0 0

 (80)

As usual, γ = 1/
√

1− v2. Remember to use the inverse Lorentz transformation!

Ok, this is a little unusual. Our electric field is still there, but it’s showing up in another place as well.
From the perspective of the new reference frame, that quantity v is completely meaningless (it just relates
two different frames, nothing more), and so it appears that there’s a funny new quantity showing up. Can
this just be a redundant description of the electric field? No, because of the presence of v in the expression.
Thus, we actually have a strange and mysterious new field now appearing. It only has one component present
at the moment, but you can easily imagine that if instead of boosting in the y direction, we boosted in the
z direction, we’d get a different component turning up. Similarly, if we start with the electric field in the y
direction, we’d get a third component showing up. Given that there are three components, for the moment,
we’ll call it the B field, and you can probably guess that it will turn out to be the magnetic field. Where
did it come from? It appeared because the electric field needed something to transform into! It couldn’t just
transform into itself; it had to transform into something else as well. In the next section, we’ll figure out
what the equations of motion for this new field are.

12 Electromagnetism: The Whole Kit, Kat and Kaboodle

Let’s go back to our formulation of electrostatics. We started with the electric potential, φ, in a four-vector,
Aµ. Now that we’ve seen that a Lorentz transformation turns the potential into the other components of
the four-vector, let’s give those components a name. We’ll call them A, the magnetic vector potential. The
four-vector will then be Aµ = (φ,A). You can probably guess that it’s related to this new mysterious field.
We already identified above that Lorentz transforming the charge density would yield a current density in
the other slots of the four-vector, so Jµ = (ρ,J), where J is the usual three-vector current density.

Now, assume that we start with some electrostatic situation, and we Lorentz transform it to a moving
frame. We no longer expect the situation to be static, because time and space are mixed. Furthermore, we
know that we now have currents, and our four-vector potential has developed spatial components too. Now
for the most important part of all: do you remember what we said about tensor equations above? Those
three equations that we’ve written down, relating the four-potential to the field strength, and giving our curl
and divergence of E, are all tensor equations. Thus, we expect them to be true, regardless of the coordinate
system that we use. Said another way, we want physics to agree in all reference frames. So, what we know
occurs in the static frame must also occur in this moving frame, and thus the Lorentz transformation of
the equations in the static frame must be valid in the new frame. Read that again. It’s a very powerful
statement.

Instead of constructing the transformation from some original frame, let’s assume that we have a four-
vector potential, and a four-current. We know what the equations describing everything were in the original
frame; they must also be true in the new frame. So, let’s go and find out what those equations have to say
in the new frame.

When we differentiate the four-vector potential to obtain the field strength tensor, we find the following.
Our old friend, the electric field, has something new to tell us:

Fi0 = Ei = −∂iφ− ∂0Ai (81)
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In vector notation, this tells us that

E = −∇φ− ∂A

∂t
. (82)

So, once things get time dependent, the rate of change of that extra vector in the potential becomes important.
Interesting. What about the other components? Well, we have three nonzero equations, and they are as
follows.

F12 = ∂1A2 − ∂2A1 (83)

F23 = ∂2A3 − ∂3A2 (84)

F31 = ∂3A1 − ∂1A3 (85)

The antisymmetric partners of these hold no new information. What this really looks like is a cross product,
the way those components are paired up. So, let’s call our new field, B = ∇ × A, such that Bx = F23,
By = F31, and Bz = F12, and just because we can, we’ll call it our magnetic field. Our electromagnetic field
strength tensor then takes the following form (again, first index row, second index column):

Fµν =


0 −Ex −Ey −Ez
Ex 0 Bz −By
Ey −Bz 0 Bx
Ez By −Bx 0

 (86)

Now this looks complete.

Next, let’s look at the equations that gave us our electrostatic equations waaay back above. The first
one, which told us that the curl of E was vanishing, has mysteriously changed.

∂γFµν + ∂µFνγ + ∂νFγµ = 0 (87)

Look at the γ = x, µ = y, and ν = t component of this equation.

0 = ∂xFyt + ∂yFtx + ∂tFxy (88)

= ∂xEy − ∂yEx + ∂tBz (89)

Huh... it appears that the curl of the electric field has something to do with the time derivative of the
magnetic field. Exercise: Find the other two equations that go with this. Combining these three equations,
we find the following for the curl of E.

∇×E = −∂B

∂t
(90)

Now, remember how I said there was a fourth equation here that was previously trivial? Now it gives us
some information. Look at γ = x, µ = y, ν = z.

∂xFyz + ∂yFzx + ∂zFxy = 0 (91)

∂xBx + ∂yBy + ∂zBz = 0 (92)

∇ ·B = 0 (93)

This new equation tells us that the magnetic field is divergenceless.

The other equation that told us about the divergence of the electric field has new information too.

∂µF
νµ = 4πJν . (94)

Our old equation, the ν = 0 component, has nothing new to add. We still have ∇ · E = 4πρ. On the other
hand, the other three equations have exciting and new information for us! Looking at the ν = x component,
for example, we find

∂tF
xt + ∂xF

xx + ∂yF
xy + ∂zF

xz = 4πJx (95)

−∂tEx + ∂yBz − ∂zBy = 4πJx (96)
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You can work out the y and z components. Exercise: Show that these three equations can be combined to
give the following,

∇×B = 4πj +
∂E

∂t
(97)

where j is the three-vector current density.

We thus have four equations governing how E and B work. These are known as Maxwell’s equations. I’ll
repeat them again here, because they’re really important.

∇ ·E = 4πρ (98)

∇×E =
∂B

∂t
(99)

∇ ·B = 0 (100)

∇×B = 4πj +
∂E

∂t
(101)

Also, we have a way of writing our fields in terms of potentials. The equations for the potentials are:

E = −∇φ− ∂A

∂t
(102)

B = ∇×A (103)

I will note that in the process of restoring units here, we end up finding a new constant of nature, which we
call µ0, which is important in the magnetic equations. This constant is related to ε0 and the speed of light
in the following way:

c =
1

√
µ0ε0

(104)

It took Maxwell’s combined equations and a lot of work to discover that those three quantities were all
related, and from our above derivation, we found that we never needed to introduce one in the first place.
Neat, huh? Exercise: Go and figure out how to insert ε0 and µ0 appropriately into Maxwell’s equations
using dimensional analysis. You shouldn’t have any factors of c left over.

Let’s stop here and admire those equations a bit. Just from Coulomb’s Law and Special Relativity, we’ve
derived all of those equations, which amounts to almost all of electromagnetism. There’s a little bit more
that we’ll see in the section below on the Lorentz Force Law, and that will make everything. You’re going
to spend the rest of the course investigating what each of these equations mean, and how all of the terms in
each of these equations behave.

13 Transforming Electromagnetism

We now have all of electromagnetism written down in our nice component notation. Furthermore, we know
how to Lorentz transform these quantities. Note that all of the equations that we are playing with are linear
in the electric and magnetic fields (or alternatively, the electromagnetic four-potential). This means that
we can understand how electric fields transform by themselves, and then how magnetic fields transform by
themselves, and get the whole picture by superimposing the two. Furthermore, because of this linearity,
you can see that like the electric field, the magnetic field also obeys the superposition principle. To find
the general transformation law is a bit of a pain. If you’d like to see what it looks like, take a look at
http://en.wikipedia.org/wiki/Lorentz_transformation. It is possible to apply these formulas blindly, but
the process I have developed here highlights the relativistic nature of these fields, and is much, much easier
to remember.

Knowing how to transform the electric and magnetic fields is the most important skill to developed from
this part of the course. A number of examples of doing this are part of the problem set at the end of these
notes, and I encourage you to practise them. Here, I want to look at an important example that is also
mathematically nontrivial, so as to show you some interesting physics, and to spare you the pain of doing it
yourself on the homework.
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13.1 Example: A Moving Charge

We know what a point charge looks like in electrostatics. What we would like to do is to understand how
the field behaves when we look at it from the perspective of a moving observer.

To start, let’s write down the static configuration.

Aµ =

(
Q

r
,0

)
(105)

E =
Q

r2
r̂ (106)

B = 0 (107)

Jµ = Q(δ3(x),0) (108)

The coordinate r is a bit of a pain to work with in special relativity, because everything is done in Cartesian
coordinates. So, you’ll have to mentally substitute in r =

√
x2 + y2 + z2. Note that our charge is a delta

function located at the origin.

Let’s boost into a moving frame now, to the perspective of someone moving in the positive x direction
with respect to us. The four-potential becomes

Aµ
′

=

(
Q

r′
γ,−Q

r′
vγ, 0, 0

)
(109)

where r′ =
√

(γx′ + vγt′)2 + y′2 + z′2. Remember how we need to inverse Lorentz transform the argument
of our functions? That’s why r had to transform.

We’ll do the other easy one next, the four-current. In the new frame, this vector is

Jµ
′

= Q(γδ(γx′ − vγt′)δ(y′)δ(z′),−vγδ(γx′ − vγt′)δ(y′)δ(z′), 0, 0). (110)

Now, one property of the delta function is that for constant positive a, aδ(x) = δ(x/a), and so we can rewrite
our four-current as

Jµ
′

= Q(δ(x′ + vt′)δ(y′)δ(z′),−vδ(x′ + vt′)δ(y′)δ(z′), 0, 0). (111)

This is exactly what we expect for our current; it looks like the same charge Q, traveling backwards along
the x axis.

To calculate the electric and magnetic fields, we can either transform Fµν , or we can differentiate the new
four-potential. If you have the potential, typically the latter will be simpler. In terms of our usual variables,
we have

φ = Qγ
1√

γ2(x+ vt)2 + y2 + z2
(112)

A = −Qvγ x̂√
γ2(x+ vt)2 + y2 + z2

(113)

where I’m dropping the primes for simplicity. Now that our special relativity is done, it’s time to find a more
convenient choice of coordinates. Let’s use cylindrical coordinates, which are (I think) best suited towards
this calculation. Let y2 + z2 = ρ2, and x = h (note that this isn’t the usual transformation to a cylinder
lying along the z axis).

φ(t, h, ρ) = Qγ
1√

γ2(h+ vt)2 + ρ2
(114)

A(t, h, ρ) = −Qvγ ĥ√
γ2(h+ vt)2 + ρ2

(115)

18



Now, we can calculate our fields.

E = −∇φ− ∂A

∂t
(116)

= − ∂φ

∂h
ĥ− ∂φ

∂ρ
ρ̂− ∂A

∂t
(117)

= Qγ
(
ĥ(h+ vt) + ρ̂ρ

) 1

(γ2(h+ vt)2 + ρ2)
3/2

(118)

The (not too) messy algebra is left as an exercise for the reader (it helps to note that A = −vφĥ, and that
∂φ/∂t = v∂φ/∂h). To understand what this equation means, it’s probably worthwhile to look at our original
electric field in cylindrical coordinates.

E0 = Q
ρρ̂+ hĥ

(h2 + ρ2)
3/2

(119)

There are three main differences. The first is that you are now moving with respect to the charge, so the
distance h→ h+ vt, which was to be expected. The second is that the field is strengthened by a factor of γ.
The third, and most important effect, is that the (h+vt) in the calculation of distance in the denominator is
boosted by γ2. This means that distances along the direction of motion are much more stretched – they’ve
gone from ∆x away from the charge to effectively ∆x/(1 − v2), which at high speeds, can be much, much
larger. This implies that the electric field about the point charge is much stronger in the plane perpendicular
to it’s motion than in the direction parallel to its motion. Figure 5.14 in Purcell describes this.

Let’s look at the magnetic field. This calculation in cylindrical coordinates is actually relatively straight-
forward.

B = ∇×A (120)

= Qvγ
∂

∂h

1√
γ2(h+ vt)2 + ρ2

φ̂ (121)

= −Qvγ (h+ vt)γ2

(γ2(h+ vt)2 + ρ2)
3/2

φ̂ (122)

This is a bit of a weird one. It’s only in the φ̂ direction, so it’s a winding field. If h > −vt, we’re looking
in the charge’s “wake”, and the field curls one way. If h < −vt, then we’re “in front” of the charge, and
we feel it’s approach. Right on top of the charge, h = −vt, it vanishes. At the same time, the factor in
the denominator is suppressing anything too far away in the x direction, so the magnetic field will be fairly
localized around the charge.

14 The Lorentz Force Law

The last thing that we want to understand is “How does a charge move in electric and magnetic fields?” We
already know part of the answer, from the Coulomb force law. Indeed, we’re going to start with that, and
perform a Lorentz transformation to discover the Lorentz force law.

What we start with is the Newtonian force law that we all know and love:

F =
dp

dt
= qE. (123)

The first thing we do is to talk about the change in momentum rather than the force, because that will make
more sense to us later on than an abstract force. Next, we want to construct a compoment notation equation
for this. E = F 0i is straightforward, but we’ll eventually want to make a spacetime statement rather than
just a statement about these particular coordinates. Let’s look towards momentum. The quantity dp/dt is
difficult, because that derivative is problematic, as we discussed before. What’s better is to look at dp/dτ ,
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the derivative with respect to proper time. We’ll need to introduce a factor of γ to do so, just like when we
defined four-velocity. However, we’re looking at our particle at rest, so γ = 1. So, let’s then write

dpi

dτ
= qF 0i. (124)

Ok, that’s got the shape of the kind of equation we want to play with. We need to do two things. The first
is to somehow turn that zero into a proper spacetime index rather than something that doesn’t transform,
and the second is to extend the i index to t as well. Let’s tackle the zero first. Exercise: Explain why having
a time component here doesn’t lead to a good equation in special relativity.

The trick is to note that we are looking at electrostatics, so we’ve got objects at rest. When a particle
is at rest, it’s velocity is vµ = (1, 0, 0, 0), and so we can use this to pick out the zeroth component of the
electromagnetic field strength tensor. Let’s put that in, and note that we also need to include a minus sign,
because of the metric (here, I’ve absorbed the minus sign by flipping the order of the indices on F ).

dpi

dτ
= qvµF

iµ. (125)

Ok, that looks like a good equation. Now, how about extending the equation to all spacetime indices? Let’s
look at what the time component of this equation would say.

dE

dτ
= qvµF

0µ = 0. (126)

Exercise: Show that the right hand side is zero. You’ll want to use what you know about vµ in the rest
frame, and one of the properties of Fµν .

That’s a little strange. If our particle is about to be pushed by the electric field, is the first derivative of
energy vanishing? Let’s check, by Taylor expanding energy.

p0 = E =
√
m2 + p2 =

√
m2 + γ2m2v2 (127)

= m+
m

2
v2 +O(v4) (128)

dE

dτ
=
dm

dτ
+
m

2

dv2

dτ
+O(v4) (129)

= 0 +mv · dv
dτ

+O(v4) (130)

= 0 (131)

Indeed, it does vanish, because v = 0. The second derivative wouldn’t be zero though, so something is
happening. Exercise: Show that if you use the fully relativistic expression for energy, the first derivative is
still vanishing.

So, it appears that we can happily include the time component of our equation, and it’s a valid equation
describing our static case. Next, we apply the same argument as before, and Lorentz transform, claiming
that physics must be the same to any other observer, and so our equation must again be valid. So, here’s
our force law in a different frame of reference:

dpν

dτ
= qvµF

νµ (132)

Let’s look at the four separate components here. The time component we just looked at before. For an
arbitrary moving charged body, it gives us

dE

dτ
= qγE · v. (133)

Exercise: derive this from the previous equation. Let’s integrate this equation to see what it says.

∆E = q

∫
E · dx

dt
dt = q

∫
E · dx = −q∆φ (134)
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That’s exactly what we want, from our knowledge of electrostatics. Furthermore however, this is general –
we have magnetic fields here too. What this tells us is that magnetic fields cannot change the energy of a
particle.

Ok, that’s the time component, let’s look at the space component, which we expect to give us something
like F = qE. The x component yields

dpx

dτ
= qγ (Ex + vyBz − vzBy) . (135)

That looks suspiciously like a cross product. Exercise: Show that the remaining two equations yield the
following vector equation:

dp

dτ
= γq (E + v ×B) . (136)

If we now convert this derivative in terms of proper time into coordinate time, we arrive at the famous
Lorentz Force Law:

dp

dt
= q (E + v ×B) . (137)

Note that this is valid for any velocity v!

15 Conclusion

And there we go – that’s everything. We have now derived all of electromagnetism, starting from Coulomb’s
Law and Special Relativity. Pretty impressive, isn’t it? In the rest of the course, you’ll be looking at
Maxwell’s equations in detail, term by term, and understanding how they work. I hope you’ve enjoyed this
little romp, which is one of my favorite pieces of physics this universe has to offer.

16 Appendix: Even More Interesting Stuff! (Bonus material)

You may recall that I said that scalars are really useful things in special relativity. However, I didn’t calculate
any scalars pertaining to the electromagnetic field. Here, we’ll rectify that little issue. One scalar we can
construct is AµA

µ. However, this isn’t really all that physical, and it doesn’t contain any information, so
we’ll ignore it. The next one is FµνF

µν , which is really useful. Exercise: Show that this scalar is given by
the following.

FµνF
µν = 2(B2 −E2) (138)

Apart from the metric and the Kronecker delta, there turns out to be one more tensor object that is the
same in every coordinate system. This is the completely antisymmetric tensor (also known as the Levi-Civita
tensor, or the epsilon tensor), εabcd. This object is defined by

ε0123 = +1 (139)

where every swap of two indices swaps the sign. For example, ε0132 = −1 because of one index swap, while
ε0312 = +1 because of two index swaps. If you lower the indices using the metric, you will find that you get
ε0123 = −1. (Sometimes, it is defined as ε0123 = +1 instead, so make sure which definition you’re using.) If
you Lorentz transform this object, you’ll find that it is the same in every coordinate system. (Try this, if
you like. You’ll need to figure out what the determinant of a Lorentz transformation metric is. As a hint,
remember that Lorentz transformations as we constructed them are in the SO(3, 1) rotation group. The O
stands for orthogonal matrices, which is a bit tricky with the funny signature, and the S stands for “special”.
See if you can find out what “special” means.)

What’s it useful for? Let’s look at the three-dimensional version. In three dimensions, the epsilon tensor
is ε123 = +1. (Because the metric in three dimensional space is Euclidean, we can lower the indices and
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get ε123 = +1, so we don’t worry about raised and lowered indices in Euclidean space.) Now, consider the
following expression.

(r× p)i = εijkrjpk (140)

The epsilon tensor is really useful for writing down cross products! Kinda neat. (Ignore the dodgy summation
convention usage here; it comes about because indices can be raised and lowered at will in three dimensions.)

What’s the four-dimensional version good for? Do you remember how we were trying to make Lorentz
invariant things out of the electromagnetic field tensor, Fab? We found this one:

FµνF
µν = 2(B2 −E2). (141)

Using the epsilon tensor, we can also construct the following Lorentz invariant quantity.

εµνσλFµνFσλ = −8E ·B. (142)

So, regardless of what frame you’re looking in, at any point, both E2 −B2 and E ·B must be the same.

That’s kind of useful. For example, we’ve learnt that the magnetic field is just a Lorentz transformation
of the electric field. There’s probably some condition that says when we can find a frame which only has an
electric field or only has a magnetic field (at a point, at least). Let’s find it. If E ·B 6= 0, then we must have
both E and B nonzero in any reference frame. So, if we want a frame with only one of the two fields, we
will require E ·B = 0. Now, let’s look at the other scalar. If E2 −B2 > 0, then we should be able to find
a frame that only has an electric field (as E2 ≥ 0). Similarly, if E2 − B2 < 0, we should be able to find a
frame with only a magnetic field. What about if E2 − B2 = 0? Well, there’s the trivial solution of “there
are no fields”. Is there a nontrivial solution? Let’s pretend that we can find a frame with only a magnetic
field. Then we have

E2
1 −B2

1 = 0 = −B2
2. (143)

Thus, we need B to vanish in this frame too. The same argument applies for the electric field. So, we’ve
found the condition on finding a frame with only one of the two fields:

E ·B = 0 (144)

E2 −B2 6= 0 (145)

This second condition is rather important: in the case of an electromagnetic wave, you will later see that
|E| = |B|, as well as E ·B = 0. This implies that in no frame does an electromagnetic wave look like just a
magnetic field or just an electric field.

Here’s something else we can use the epsilon tensor for. Recall this equation:

∂γFµν + ∂µFνγ + ∂νFγµ = 0 (146)

Remember how I said there are only four actual equations here? Well, here’s how we can show that. Firstly,
check the following. If we interchange any two coordinates on the left hand side, every term will pick up
a negative sign (you will need to use the fact that Fµν is antisymmetric in its indices, and also to swap a
couple of terms around). This means that the entire expression on the left hand side is antisymmetric. Now,
this means that we can contract with the epsilon tensor on three indices, and we won’t lose any information.
The expression will still equal zero, but now we only have one free index left floating around from the epsilon
tensor. Thus, we only have four equations.
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17 Problems

These problems are designed to get you interacting with the four-vector notation, and deriving some relatively
simple properties of the electromagnetic field.

Problem 1: Electromagnetism as a Requirement of Special Relativity
In your own words, explain qualitatively why magnetism arises from the Coulomb Force Law and Special
Relativity. Do not include any equations in your answer.

Problem 2: Time Dilation and Length Contraction
Consider me in my rest frame. I measure the time difference between an event at (0, 0, 0, 0) and (t, 0, 0, 0).
Now, boost these events to a rest frame moving at speed v with respect to me. Write the time difference
this other observer sees between these two events as a relationship between the observed and proper time.

Next, I see an object moving towards me at speed v. To measure it’s length, I record simultaneous events
at (0, 0, 0, 0) and (0, L, 0, 0). Calculate where these events occur in the object’s rest frame. The object can
measure the location of it’s two end points at different times, because it’s not moving in it’s rest frame.
Thus, calculate the relationship between the proper length of the object and the length that I measure
(proper length is the equivalent of proper time – it’s the length of an object in the rest frame of that object).

Problem 3: Relativistic Doppler Shift
Consider a photon, of energy E = hf , traveling in the x direction. Construct the four-momentum. What
happens if we boost in the positive x direction? Construct the Lorentz transformation, and calculate the
four-momentum in this frame. How does the frequency change as a function of velocity? Next, boost your
original four-momentum in the y direction, and perform the same calculation. You should find that you have
a Doppler shift, but your classical intuition shouldn’t have expected one (it doesn’t occur in sound waves,
for example). This transverse relativistic Doppler effect is important in astronomy.

Problem 4: Relativistic Addition of Velocity
Write down a velocity four-vector in the x direction. Now, boost this vector in the x direction by a different
velocity. Calculate the resultant three-velocity from doing so. Now, instead of boosting in the x direction,
boost in the y direction, and calculate the resultant three-velocity from this process. (Hint: Start with a zero
velocity vector, and boost it to get the first velocity vector, using rapidity. When you perform the second
boost, you can use hyperbolic trigonometric identities to perform this calculation straightforwardly.)

Problem 5: Longitudinal Electric Field
Starting with an electric field in the x direction, boost in the x direction. What happens to the electric field?
What happens to the magnetic field? Explain what you have just derived.

Problem 6: Infinite Charged Plane
Consider an infinite charged plane in the x-y plane with uniform surface charge density. Write down the
electric field for this system, and then Lorentz boost it in the x direction. Describe the electric field, and
explain if it is what you would expect, based on your original electric field and length contraction. What
does the magnetic field look like? (Bonus question for later: Does this agree with Ampere’s Law?)

Problem 7: Lorentz Invariants
Calculate FµνF

µν in terms of the electric and magnetic fields. What is special about this quantity?

Problem 8: Gauge Transformations
Recall that the electric potential has some freedom in where you choose the zero. When you move to a four-
potential, the amount of freedom you have available increases. Show that the electric and magnetic fields
are unchanged if you add a divergence to the electromagnetic potential, Aµ → Aµ +∂µf(xν), where f is any
differentiable function of spacetime. Calculate how this transformation (known as a gauge transformation)
affects the electric potential and magnetic vector potential.

Problem 9: Continuity Equation
Consider the equation ∂µF

νµ = 4πJν . What equation do you get if you differentiate noth sides and contract
with the free index? Write the resulting equation in terms of the three-dimensional charge density and
current. This equation is known as the continuity equation, and tells you that charge must be conserved. As
a bonus challenge, see if you can figure out how to derive conservation of charge from the equation.
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