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Abstract

We present a comprehensive analysis of the exact Bethe ansatz solution for the one-
dimensional spinor Bose gas. The Bethe ansatz equations and the thermodynamic Bethe
ansatz equations are derived, before investigating properties of these equations in limit-
ing regimes. We explore the difference between spinless and spinor particles in the one-
dimensional Bose gas. For the spinor Bose gas, we present a new approximation to the
thermodynamic Bethe ansatz equations which allows them to be solved in the strong cou-
pling regime. We derive the first order correction to the solutions of the thermodynamic
Bethe ansatz equations in a low temperature regime, where spin effects are most evident.
We then derive thermodynamic quantities for this model, adding a first order correction
to the thermodynamics of the spinless system.

The subject of fractional exclusion statistics is presented, and its significance with
regards to the spinless Bose gas is discussed. We also discuss its significance with regards
to the spinor Bose gas, and find a regime in which non-mutual statistics may be applied to
the spinor Bose gas to obtain expansions of thermodynamic quantities. These expressions
are seen to improve upon previous analytical results for the model.
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Preface

Throughout this thesis, a number of conventions have been used in mathematical equations
for brevity. We use the conventions

h̄ = 1

2m = 1

kB = 1

throughout, where h̄ is Plank’s constant divided by 2π, m is particle mass, and kB is
Boltzmann’s constant.

To indicate the Fourier transform of a function, we place a hat over the function. For
example, σ̂.

We have used O(x) to denote big-O notation, indicating terms of order x.
An approximation known as “Sommerfeld’s Lemma” is sometimes used. Details on

Sommerfeld’s lemma may be found in Appendix A.
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Chapter 1

Introduction

1.1 Overview

Recent developments in experimental techniques have seen the production of a variety
of quantum structures, including quantum gases, quantum dots and wires, Bose-Einstein
condensates (BECs), and superconducting metallic nanograins. The ability to obtain
nanokelvin regimes, highlighted in the production of BECs, has allowed theories of novel
quantum structures and phase transitions to be tested experimentally for the first time.

Fundamental quantum systems involve the interaction between bosonic and/or
fermionic particles. At low temperatures, subtle effects become evident, such as those
of spin interactions, because thermal fluctuations have been suppressed. Furthermore,
statistical effects such as the Pauli exclusion principle for fermions become highlighted. In
this regard, fermions and bosons behave very differently at low temperatures. Fermions
are particles with half-integral spin which obey the Pauli exclusion principle, while bosons
are particles with integral spin which do not. A curious property of quantum mechanics
is that when two fermions are combined, they form a boson, and so depending on the
nucleus and the number of electrons an atom has, it may be either a boson or a fermion.
Using this principle, gases of alkaline metals of specific nuclei have been made to condense
at very low temperatures to form a Bose-Einstein condensate, where large numbers of par-
ticles collapse into the quantum ground state. A consequence of this phenomenon is that
quantum effects are amplified, to the extent that some may be observed macroscopically.

1.1.1 Bose-Einstein Condensates

Bose-Einstein condensates form when the de Broglie wavelength of particles becomes so
large that the wavefunctions for particles overlap significantly. This is achieved by cooling
a gas of atoms to a very low temperature, often through the use of laser cooling and
evaporative cooling, although a variety of new ways to trap and cool atoms have been
developed. The first gaseous BEC was observed in 1995, for which the Nobel Prize in
Physics was awarded in 2001 [1]. The technique used to do so, a method known as “laser
cooling”, which cools and traps atoms with laser light, was awarded the Nobel Prize
in 1997 [2]. Although remarkable in itself, BECs and techniques associated with them
have allowed experimentalists to probe nanokelvin regimes to investigate a variety of new
quantum systems.

1.1.2 Experiments in One Dimension

Building on the success of BECs, it is now possible to create effectively one-dimensional
traps for quantum gases, with a tunable interaction strength [3, 4, 5]. Common techniques

1



2 Introduction

Figure 1.1: Comparison between experiment and theory for the 1D Bose gas. The left panel shows the

rms full length of the 1D atom cloud vs. the transverse confinement [5]. The circles represent the measured

values. The solid line is the exact result, and the dotted line is the fermionic limit. Error bars on the theory

curve reflect uncertainties in experimental parameters. The right panel shows the local pair correlation

function vs. effective interaction strength of the 1D Bose gas [7]. Again the solid line is obtained from the

exactly solved (integrable) model [6].

for the production of one-dimensional traps include optical lattices and optical waveguides.
Notable experiments include the measurement of momentum distribution profiles for

one-dimensional systems [3, 4, 5]. Figure 1.1, left panel, plots the results of Weiss et
al., who measured the internal energy of the system as a function of system scale and
temperature (the scale of the system is shown here), for varying interaction strength.
It was found that the results fitted the predictions of the one-dimensional Bose gas (also
called a Tonks-Girardeau gas for strong coupling), agreeing with Lieb and Liniger’s seminal
paper on the subject [6]. The trap was comprised of an array of ‘tubes’ in which atoms
were restricted to movement in one dimension only.

Another striking experiment, also by Weiss et al. [7], measures the photoassociation
rates in one-dimensional Bose gases of 87Rb atoms to determine the local pair correlation
function over a range of interaction strengths (see Figure 1.1, right panel). The local pair
correlation function provides an indication of atomic wavefunction overlap, and so this
experiment provides a direct observation of the fermionisation of bosons with increasing
interaction strength. Fermionisation is a process by which bosons with a repulsive inter-
action start to behave like fermions as the interaction strength is increased. Figure 1.2
provides a qualitative illustration of the process.

1.1.3 The Spinor Bose Gas

Like the quantum Bose gas, it is now also possible to trap multicomponent gases through
manipulation of hyperfine Zeeman states, creating an effective spinor Bose gas. The
structure of the spinor Bose gas is much richer than that for the quantum Bose gas, as the
spin degree of freedom can lead to spin oscillations, causing spin waves. The observation
of the dynamics of spin waves and the effect of spin-states on trapped spinor Bose gases
provide further exciting opportunities for studying magnetism and novel quantum phase
transitions [8, 9, 10]. To begin with, the ground state has ferromagnetic order, which is
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Figure 1.2: Illustration of atomic distributions and wavefunctions in one dimension. For small interaction

strength (low γ), the wavefunctions have significant overlap, and the particle distribution is concentrated

in a small region. As the interaction strength increases, the particles begin to repel each other more, so

there is less overlap between wavefunctions, and the particle distribution becomes broader. Figure taken

from Ref. [5].

significantly different to the antiferromagnetic behaviour found in Fermi gases. Far less
work has been done to date on the spinor Bose gases [11, 12, 13, 14, 15] compared to the
spinless case.

1.2 Motivation

One of the features of one-dimensional models is that they are often exactly solvable quan-
tum many-body problems, such as the 1D Hubbard model [16], the BCS model [17, 18],
and the Heisenberg chain [19]. Sutherland has referred to these as “Beautiful Models”
[20], stating that while such models are too mathematical to be physics, and yet not rig-
orous enough to be mathematics, they provide an unsurpassed insight into the realm of
many body physics. A curious consequence of one-dimensionality is that particle inter-
change may only occur when two particles pass through each other, feeling the full scope
of particle-particle interactions. Given the experimental success of the Lieb-Liniger model
for one-dimensional spinless bosons [6], analytical results for more complex models are
now of particular interest, as the theoretical results now may be experimentally tested.

Our aim in this thesis is to explore the spinor Bose gas model, which presents an insight
into the effect of an internal degree of freedom possessing an SU(2) symmetry on a many-
body system. We investigate the thermodynamics of this model, with particular attention
devoted to the strong coupling regime at low temperatures, in which the fermionisation
of bosons is evident.

1.2.1 Fractional Exclusion Statistics

On a more theoretical note is the classification of a system by the statistics that its particles
obey. Well known quantum statistics are the Bose-Einstein statistics and Fermi-Dirac
statistics. Yet some systems belong to neither of these, and are attributed to “fractional
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exclusion statistics”. It has been shown [21] that the spinless Bose gas in one dimension
obeys Haldane exclusion statistics [22], and it is thus of theoretical interest to understand
what manner of statistics the spinor Bose gas obeys, if any. We examine this question,
and look into the possibility of deriving thermodynamic results from this approach.

1.3 Thesis Plan

In Chapter 2, we present the Bethe ansatz method, which is the method used to derive
exact solutions for key one-dimensional models. We review results from the quantum
Bose gas, before deriving the Bethe ansatz equations for the spinor Bose gas in detail.
The thermodynamics of the spinor Bose gas are derived in Chapter 3, where we obtain
the thermodynamic Bethe ansatz equations.

The concept of fractional exclusion statistics is discussed in Chapter 4. We present
the motivation for Haldane exclusion statistics, and derive thermodynamic results for a
system which obeys such statistics. We review Bernard and Wu’s presentation of how the
spinless Bose gas obeys Haldane exclusion statistics, before considering how such a result
may be applied to the spinor Bose gas.

Having developed the requisite background theory, we present our own derivations of
solutions to the thermodynamic Bethe ansatz equations in limiting regimes in Chapter 5,
in order to understand the behaviour of the model at strong and weak coupling, as well
as at high and low temperatures.

In Chapter 6, we present a new approximation to the thermodynamic Bethe ansatz
equations at low temperature in the strong coupling regime, deriving a first order correction
to the thermodynamics for the spinless Bose gas.

We return to fractional exclusion statistics in Chapter 7, and discuss why all attempts
at deriving a statistical interaction for the spinor Bose gas have failed. However, we have
found a special situation in which a statistical interaction may be approximated, and apply
the work of Isakov et al. [23] to obtain thermodynamic information.

Finally, we conclude this work and describe possibilities for further investigation in
Chapter 8.

We have drawn together a list of terms with which the reader may be unfamiliar, and
presented a brief explanation of these in a glossary.



Chapter 2

The Bethe Ansatz

The Bethe ansatz was introduced in 1931 by Hans Bethe [24] as a proposed method to
obtain the eigenspectrum of the one-dimensional Heisenberg ferromagnet. The principal
assumption of the method is the Bethe-Hulthén hypothesis [25], which states that in the
scattering of two particles, the outgoing states yield only reflected waves and no diffracted
waves, which has been shown to be equivalent to being able to divide coordinate space into
a finite number of regions. If this is the case, then the wavefunction may be assumed to be
a finite sum of travelling waves of different amplitudes. Importantly, these eigenfunctions
are complete, and account for all possible states. This method has proven to be invaluable
in finding analytical solutions for a number of one-dimensional models. We present the
results from using the Bethe ansatz for the spinless Bose gas, before deriving the Bethe
ansatz equations for the spinor Bose gas.

2.1 The Spinless Boson with δ-function Interaction

In 1963, Lieb and Liniger [6] applied the Bethe ansatz to the problem of one-dimensional
bosons with a δ-function interaction. They derived the general wavefunction and Bethe
ansatz equations, before extensively analysing the ground state.

The Hamiltonian of this system is

H = −
N∑

i=1

∂2

∂x2
i

+ 2c
∑
i<j

δ(xi − xj) (2.1)

where N is the number of particles in the system, c is the interaction strength between
particles, and {xi} refers to the positions of the particles. Many models use this form
of interaction; notably, the Gross-Pitaevskii equation starts with this interaction before
applying a mean-field approximation. The Bethe ansatz is a trial wavefunction for this
Hamiltonian

ψ(x1, x2, . . . , xN ) =
∑
P

A(P ) exp(i
N∑
l

kPl
xl) (2.2)

where P denotes the sum over all permutations of (1 2 3 . . . N), and the parameters
{ki} are pseudomomenta. Note that the form of the ansatz is a sum over all possible
permutations of plane waves. The momentum and energy operators reveal

5



6 The Bethe Ansatz

K =
N∑

i=1

ki

E =
N∑

i=1

k2
i (2.3)

From considering the periodic boundary conditions, particle exchange symmetries, and
the discontinuity in derivative of the wavefunction where two particles overlap, relation-
ships between the pseudomomenta can be found. These relationships generally result in N
transcendental equations, known as the Bethe ansatz equations (BAE). Lieb and Liniger
found these equations to be

eikiL =
N∏

j 6=i

ki − kj + ic
ki − kj − ic

, i = 1, 2, . . . , N (2.4)

where it is enforced that all {ki} are different, else the wavefunction identically vanishes.
L is the length of the system.

As discussed in Chapter 1, the Lieb-Liniger gas has been experimentally realised, with
results confirming predictions from the model.

2.2 The Spinor Boson with δ-function Interaction

Following on from the predictive success of the Lieb-Liniger model, a similar method may
be employed to model the spinor Bose gas in one dimension. The spinor Bose gas is a
system whose wavefunction is symmetrical upon particle exchange, and whose particles
have an internal degree of freedom with SU(2) symmetry. This is akin to a boson with
a pseudo-spin structure that has the usual raising and lowering operators. Note that the
SU(2) group allows for an arbitrary maximum spin, but for spinor bosons, this maximum
spin is 1

2 . This SU(2) symmetry may also be generalised to higher order SU(N) symmetry.
Although bosons usually have integer spin, we may construct situations in which par-

ticles are effectively constrained to spin 1
2 . We take, for example, an atom with angular

momentum F = I+J , where I is the nuclear spin and J is the electron angular momentum.
If J = 1/2, I = 7/2 in the ground state (for example, caesium), then possible F values
are 3 and 4, which correspond to two separate hyperfine Zeeman states. When atoms
are magnetically confined, they will adopt “weak field” seeking states to minimise their
energy. Such a state will have a particular angular momentum and projection |F,mF 〉. It
is possible to magnetically confine more than one such state together, as is the case for
87Rb, where projections of the singlet and triplet states can coexist. This can lead to a
gas of bosonic atoms with two spin states forming a pseudo-spin doublet; we may denote
the two states as |↑〉 and |↓〉. These two states will have different scattering energies. In
this way, a spinor pseudo-structure may be formed.

As the rest of this thesis deals with the Bethe ansatz equations for the spinor boson,
they are derived here in detail. We follow the approach set out in Oelkers et al. [26,
appendices].

2.2.1 The Hamiltonian

We use a similar Hamiltonian to Lieb and Liniger, adding in a Zeeman-type term that
distinguishes between spin-↑ and spin-↓ particles. Ω is the coupling strength for a Rabi
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interaction, and M is the number of particles with spin down, to a maximum of N/2.
Thus

H = −
N∑

i=1

∂2

∂x2
i

+ 2c
∑
i<j

δ(xi − xj)− 2Ω
N∑

i=1

Sz
i

= −
N∑

i=1

∂2

∂x2
i

+ 2c
∑
i<j

δ(xi − xj)− Ω(N − 2M) (2.5)

Here we introduce the pseudospin operators Sz |↑〉 = 1
2 |↑〉, S

z |↓〉 = −1
2 |↓〉. Note that c,

which represents the interaction strength, must be positive for the thermodynamic limit
to exist. This means that the interaction is of a repulsive nature.

2.2.2 The Bethe Ansatz

Our wavefunction is a function of the position of all particles, as well as a function of
the spin of each particle. We write our ansatz as the sum over all travelling waves, with
amplitudes dependent upon the order of the particles in one dimension, the spin states,
and the permutation being summed.

Ψ(x1, . . . , xN , σ1, . . . , σN ) =
∑

P Aσ1,...,σN (P1, . . . , PN |Q1, . . . , QN )

× exp(i(kP1xQ1 + . . .+ kPN
xQN

)) (2.6)

The sum is over all N ! permutations P of (1 2 3 . . . N), and Q is the permutation
(Q1, Q2, . . . , QN ) of (1 2 3 . . . N) such that 0 ≤ xQ1 < . . . < xQN

≤ L. {ki} are N pseu-
domomentum values, to which restrictions will be derived. They must all be different, or
the wavefunction becomes degenerate. Due to the nature of this piecewise definition based
upon the order of the particles, the pseudomomenta are not true wavevectors. However,
the sum of all pseudomomenta, which is the total momentum of the system, is a true
wavevector.

The momentum and kinetic energy of the system

K =
N∑

i=1

ki

E =
N∑

i=1

k2
i (2.7)

are found by applying the momentum and energy operators.

2.2.3 The Bethe Ansatz Equations

To derive the Bethe ansatz equations, i.e., to derive the energy eigenspectrum of the model,
we apply three conditions which the amplitudes obey:

1. Symmetry

2. Continuity, and discontinuity of the derivative

3. Periodic boundary conditions
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Symmetry

Let us start by applying boson symmetry to the wavefunction: Ψ → Ψ upon interchanging
xi, σi ↔ xj , σj :

Aσiσj (P1, . . . , PN |Qa, Qb) = Aσjσi(P1, . . . , PN |Qb, Qa)

A change in notation is introduced here for brevity, where Qa and Qb denote the
positions of xi and xj . Similarly, let i = Pa, and j = Pb. Let us also introduce the
operator

[
T ij
]σ′1...σ′N
σ1...σN

= δσi,σ′j
δσj ,σ′i

∏
r 6=i,j δσr,σ′r , which obeys

Aσ1...σN (P |Qa, Qb) =
[
T ij
]σ′1...σ′N

σ1...σN

Aσ′1...σ′N
(P |Qb, Qa)

The Einstein summation convention is used. Note that T ij = P ij , where P is the permu-
tation operator.

Continuity

The wavefunction must be continuous at the intersection between two of the piecewise
components. Thus we have Ψ(~x, ~σ)xi>xj , xi→xj = Ψ(~x, ~σ)xj>xi, xi→xj . Then in Ψ, there
are pairs of permutations which have the same exponentials at xi = xj , leading to

A~σ(Pi, Pj |Qi, Qj)exp(i(xQikPi + xQjkPj ))

+A~σ(Pj , Pi|Qi, Qj)exp(i(xQikPj + xQjkPi)) =

A~σ(Pi, Pj |Qj , Qi)exp(i(xQjkPi + xQikPj ))

+A~σ(Pj , Pi|Qj , Qi)exp(i(xQjkPj + xQikPi))

Realising that xQi and xQj are identical at the intersection, the exponentials cancel, leaving

A~σ(Pi, Pj |Qi, Qj) +A~σ(Pj , Pi|Qi, Qj) =

A~σ(Pi, Pj |Qj , Qi) +A~σ(Pj , Pi|Qj , Qi)

δ-interaction

If the Hamiltonian is integrated with respect to d(xi−xj) from −ε to ε, it is readily found
by changing to centre-of-mass coordinates and letting ε approach zero that

∂Ψ
∂y

∣∣∣∣
y=0+

− ∂Ψ
∂y

∣∣∣∣
y=0−

= c Ψ|y=0

Here, y is the (xi − xj) coordinate. When this formula is applied to the ansatz (equation
2.6), we find that

i(kPb
− kPa) [A~σ(Pa, Pb|Qa, Qb)−A~σ(Pb, Pa|Qb, Qa)]

= c [A~σ(Pa, Pb|Qa, Qb) +A~σ(Pb, Pa|Qa, Qb)]
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Using the T ij operator defined above, we can rearrange these equations into

Aσ1...σN (Pa, Pb|Qa, Qb) =

[
i(kPb

− kPa)T ij + cId
i(kPb

− kPa)− c

]σ′1...σ′N

σ1...σN︸ ︷︷ ︸Aσ′1...σ′N
(Pb, Pa|Qa, Qb)

We use Id to denote identity operator. Define the operator Y ij(kPb
− kPa) to be the term

in the brace. Because this relationship is derived from neighbouring particles, it is valid
only for when xi and xj are neighbours, or equivalently, when Qa and Qb are neighbours.

Finally, define
[
Xij(u)

]σ′1...σ′N
σ1...σN

=
[
Y ij(u)

]σ′1...σ′N
σ′′1 ...σ′′N

[
T ij(u)

]σ′′1 ...σ′′N
σ1...σN

. Then we can write

Aσ1...σN (Pa, Pb|Qa, Qb) =
[
Xij(u)

]σ′1...σ′N

σ1...σN

Aσ′1...σ′N
(Pb, Pa|Qb, Qa) (2.8)

This is particularly useful as it allows us to swap two P and Q values.

Periodic Boundary Conditions

Enforcing periodic boundary conditions provides the next step in deriving the Bethe ansatz
equations. Two points in one-dimensional space, call them x = 0 and x = L, are con-
sidered to be the same point. Thus, we require that Ψ(x1, x2, . . . , xi = 0, . . . , xN ) =
Ψ(x1, x2, . . . , xi = L, . . . , xN ). Without loss of generality, let i = Q1. Then when xi = 0,
Q1 will be in the leftmost position, but when xi = L, Q1 will be in the rightmost position.
In full, we have∑

P Aσ1,...,σN (P1, . . . , PN |Q1, . . . , QN ) ei(kP2
xQ2

+...+kPN
xQN

) =∑
P Aσ1,...,σN (P1, . . . , PN |Q2, . . . , QN , Q1) ei(kP1

xQ2
+...+kPN−1

xQN
+kPN

L)

Equating the exponentials on each side with regards to {xi}, we arrive at the condition

Aσ1,...,σN (P1, . . . , PN |Q1, . . . , QN )

= eikP1
LAσ1,...,σN (P2, . . . , PN , P1|Q2, . . . , QN , Q1) (2.9)

The Yang-Baxter Relations

Equation 2.9 provides a relationship between two different amplitudes A. Through the use
of the X operator, defined in equation 2.8, it is possible to rewrite equation 2.9 in terms
of one A only. This is done by permuting P1 and Q1 through from one side to the other.

There are many different paths which one can take to obtain this result, and it is
important that all paths are equivalent. It is well known that operators which obey this
condition satisfy the celebrated Yang-Baxter relations, which are

Xab(u)Xcd(v) = Xcd(v)Xab(u) for different a, b, c, d

Xab(u)Xac(u+ v)Xbc(v) = Xbc(v)Xac(u+ v)Xab(u)

Xab(u)Xba(−u) = 1 (2.10)
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Ignoring the σ subscripts for now, Xij(u) may be written as

Xij(u) = Y ij(u)T ij(u)

=
iuT ij + cId

iu− c
T ij

=
iuId + cT ij

iu− c
(2.11)

In this notation, it is easily seen that Xij obeys the Yang-Baxter relations. Thus, all paths
from a common start to a common end using multiple Xij operations are equivalent.

We begin

eikP1
LAσ1,...,σN (P2, . . . , PN , P1|Q2, . . . , QN , Q1)

= Aσ1,...,σN (P1, . . . , PN |Q1, . . . , QN )

= XP2P1(kP2 − kP1)
~σ′
~σ Aσ′1,...,σ′N

(P2, P1, P3, . . . , PN |Q2, Q1, Q3, . . . , QN )

= XP2P1(kP2 − kP1)
~σ′
~σ X

P3P1(kP3 − kP2)
~σ′′
~σ′

Aσ′′1 ,...,σ′′N
(P2, P3, P1, P4, . . . , PN |Q2, Q3, Q1, Q4, . . . , QN )

...

= XP2P1(kP2 − kP1)
~σ′
~σ . . . XPNP1(kPN

− kP1)
~σN−1

~σN−2

AσN−1
1 ,...,σN−1

N
(P2, . . . , PN , P1|Q2, . . . , QN , Q1) (2.12)

Thus, we have arrived at an eigenvalue equation for A. To find the eigenvalue of the
product of X operators, we make the transformation

Xij(u) =
iuId + cT ij

iu− c

=
iu+ c

iu− c
· iuId + cT ij

iu+ c

=
u− ic
u+ ic

Rij
(

iu
c

)
(2.13)

where Rij(u) = uId+Pij

1+u . For ease of writing, we also make the transformation P2 = 1, P3 =
2, . . . , PN = N , skipping i, to which we give P1 = i. We do the same for Qn, and adjust
the indices accordingly. It is understood that 1 ≤ i ≤ N , covering all possibilities. We also
suppress the spin indices, as they remain unchanged, and are dealt with by Sutherland
(see below). We then have

X1,i(k1 − ki) . . . Xi−1,i(ki−1 − ki)Xi+1,i(ki+1 − ki) . . . XN,i(kN − ki)

=

 N∏
j 6=i

ki − kj + ic
ki − kj − ic

R1,i(k1 − ki) . . . Ri−1,i(ki−1 − ki)

Ri+1,i(ki+1 − ki) . . . RN,i(kN − ki) (2.14)

Thus the problem is reduced to finding the eigenvalue of the transfer matrix associated
with Rij . This was first accomplished by Sutherland [27] in 1967, who discovered that
solving the system produced another set of equations of the same form, with the represen-
tation reduced by one dimension. The first level Bethe ansatz equations are then found
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by equating the eigenvalue to the exponential previously found.

eikiL =
N∏

j 6=i

ki − kj + ic
ki − kj − ic

M∏
j=1

ki − Λj − ic/2
ki − Λj + ic/2

i = 1, . . . N (2.15)

Here {Λj} are a set of M unequal constants that arise from the solution of the eigenvalue
equation (recall that M is the number of particles with spin-↓). They are arbitrary in
the solution of the first level equations, but will soon be restricted by the second level
solution. If any two of {Λj} are equivalent, then the solution becomes degenerate, as does
the wavefunction. The meaning of these constants will be discussed below.

The second set of equations produced by solving the first level equations are solved in
a similar manner, as given in Sutherland’s paper. As our model only has a two-level spin
state, the second level equations are our final equations. If we were using higher order
spin states, we would have higher level equations again. Sutherland gives the second level
Bethe ansatz equation to be

1 =
N∏

j=1

Λi − kj − ic/2
Λi − kj + ic/2

M∏
j 6=i

Λi − Λj + ic
Λi − Λj − ic

i = 1, . . .M (2.16)

The products may be extended to the entire range of variables, where the previously
omitted terms in the products each contribute a negative sign. Our Bethe ansatz equations
are thus

eikiL = −
N∏

j=1

ki − kj + ic
ki − kj − ic

M∏
j=1

ki − Λj − ic/2
ki − Λj + ic/2

i = 1, . . . N

1 = −
N∏

j=1

Λi − kj − ic/2
Λi − kj + ic/2

M∏
j=1

Λi − Λj + ic
Λi − Λj − ic

i = 1, . . .M (2.17)

Solutions of these equations give the energy and momentum of the system through equa-
tions 2.7.

2.2.4 Spin Rapidities

The variables {Λj} are known as “spin rapidities”, and there exists one spin rapidity for
each particle with spin-↓. They have the same units as the pseudomomenta parameters
{ki}, but their physical meaning lies in the momentum description of spin-wave excitations.
They do not directly contribute to the energy or the momentum of the system, although
the energy associated with spin flipping affects the scattering process of the particles,
impacting upon the distribution of the pseudomomentum parameters, as shown in the
Bethe ansatz equations (equations 2.17). Spin rapidities may take complex values.

Here we introduce the term “charge rapidities” to denote the pseudomomenta. As
pseudomomenta are not constrained to a particular particle, the set of charge rapidities
as a whole describes the particles of the system, while the set of spin rapidities describes
the spin-wave excitations in the system. We will often denote the two components of
this system by charge and spin. In discussing fractional exclusion statistics, we even
treat these components as individual pseudoparticles: each charge pseudoparticle has a
particular pseudomomentum associated with it, while each spinon has a particular spin
rapidity. It is important to remember that these are not physical particles.
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2.2.5 The Ground State

Ignoring any external fields, the ground state of the gas has the lowest possible collection
of pseudomomenta. This minimises the energy, which is the sum over all k2

i in the Dirac
sea. From observing the effect a single spin rapidity has on the system, it can be seen
that the ground state of the gas is a ferromagnetic state with M = 0, which is equivalent
to the spinless case. A single particle with spin-↓ can lead to spin wave excitations, see
[14, 15].



Chapter 3

The Thermodynamic Bethe

Ansatz

Towards the end of the 1960’s, Yang and Yang [28] published a method for extracting
thermodynamic information from the Bethe ansatz equations of the spinless boson. The
method involved calculating particle and hole densities in the thermodynamic limit as
N → ∞ and L → ∞, with N/L = D, a constant. From these densities, the Helmholtz
free energy is calculated and minimised, resulting in an integral equation. The solution to
this integral equation allows the calculation of the Helmholtz free energy, from which most
relevant thermodynamic quantities can be calculated, at least in principle. This method
is known as the thermodynamic Bethe ansatz (TBA).

Recently, Gu et al. [29] derived the TBA for the spinor Bose gas, using the string
hypothesis to account for the spin rapidities. Here we follow their method closely, deriving
the TBA utilising both the string hypothesis and a low temperature approximation.

3.1 The Spinor Boson

The thermodynamic Bethe ansatz may be derived for the spinor Bose gas by calculating
the density of roots and holes for both pseudomomenta and spin rapidities. Unfortunately,
whilst it has been shown that pseudomomenta values must be real, spin rapidities may be
complex. Takahashi [19] has shown that spin rapidities in Bethe ansatz models conform
to the so-called string hypothesis, where spin rapidities form bound states in ‘strings’ of
varying lengths, with error e−εN , where ε is a positive constant and N is the number of
particles in the system. Thus, in the thermodynamic limit, we may assume this hypothesis.
This allows us to calculate densities for strings of varying lengths, and thus obtain the
density of spin rapidities.

Hatsugai et al. [30] have hypothesised that creating complex string rapidities requires
more energy than real string rapidities, and thus that at low temperatures, only real spin
rapidities occur. We begin by describing the string hypothesis, before proceeding to derive
the thermodynamic Bethe ansatz assuming both the string hypothesis and real rapidities.

3.2 The String Hypothesis

The string hypothesis states that spin rapidities will join together in a ‘bound state’ to
create ‘strings’. Each of these strings contain a specific number of rapidities, which occur
in complex conjugates about the same real coordinate. Each string may be written as
λ + (n + 1 − 2j)ic/2 + O(exp(−εN)), where λ is the real component of the string, n is

13
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the length of the string (number of rapidities it contains), and j = 1, . . . , n indicates the
different individual rapidities within the string. Strings of length one contain a single
spin rapidity, which must be real. In this manner, every spin rapidity Λi may be written
Λnj

a = λn
a +(n+1−2j)ic/2+O(exp(−εN)), where n is the length of the string, j indicates

the position within the string, and an enumerates all strings of length n. Thus, instead of
summing over all i to enumerate all rapidities, we sum over all n, a, j. Note that there are
still only M rapidities, and thus

∑
n nNn = M , where Nn is the number of n-strings.

3.3 The Bethe Ansatz Equations

Low Temperature Approximation

In Chapter 2, we derived the Bethe ansatz equations (BAE) for the spinor Bose gas. They
are repeated here for convenience.

eikiL = −
N∏

j=1

ki − kj + ic
ki − kj − ic

M∏
j=1

ki − Λj − ic/2
ki − Λj + ic/2

i = 1, . . . N

1 = −
N∏

j=1

Λi − kj − ic/2
Λi − kj + ic/2

M∏
j=1

Λi − Λj + ic
Λi − Λj − ic

i = 1, . . .M (3.1)

As we assume that all spin rapidities are real in the low temperature approximation, we
may just use this form, and take all {Λj} real. To apply the string hypothesis, however,
the form of these equations needs to be altered, which we do next.

String Hypothesis

We now apply the string hypothesis to the BAE, substituting in the new form for the spin
rapidities. This gives Λnj

a = λn
a + (n+ 1− 2j)ic/2 +O(exp(−εN)).

eikiL = −
N∏

j=1

ki − kj + ic
ki − kj − ic

∏
naj

ki − λn
a − (n+ 2− 2j)ic/2

ki − λn
a − (n− 2j)ic/2

i = 1, . . . N

1 = −
N∏

ν=1

λn
a − kν + (n− 2j)ic/2

λn
a − kν + (n+ 2− 2j)ic/2

∏
mbl

λn
a − λm

b + (n− 2j −m+ 2l + 2)ic/2
λn

a − λm
b + (n− 2j −m+ 2l − 2)ic/2

∀ n, a, j (3.2)

The first step is to apply a product over all j to the second level equation:

1 = −
n∏
j

[
N∏

ν=1

λn
a − kν + (n− 2j)ic/2

λn
a − kν + (n+ 2− 2j)ic/2

∏
mbl

λn
a − λm

b + (n− 2j −m+ 2l + 2)ic/2
λn

a − λm
b + (n− 2j −m+ 2l − 2)ic/2

]
∀ n, a (3.3)

Now, note that
∏n

j=1
x−(n+2−2j)ic/2

x−(n−2j)ic/2 , when written out fully, allows adjacent numerators
and denominators to cancel, leaving only the first numerator and the final denominator.
Similarly for

∏n
j=1

x+(n−2j)ic/2
x+(n+2−2j)ic/2 . Thus we have

n∏
j=1

x− (n+ 2− 2j)ic/2
x− (n− 2j)ic/2

=
x− nic/2
x+ nic/2
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n∏
j=1

x+ (n− 2j)ic/2
x+ (n+ 2− 2j)ic/2

=
x− nic/2
x+ nic/2

(3.4)

Applying these formulae to the first level BAE, and to the first product of the second level
BAE, we arrive at

eikiL = −
N∏

j=1

ki − kj + ic
ki − kj − ic

∏
na

ki − λn
a − nic/2

ki − λn
a + nic/2

i = 1, . . . N

1 = −
N∏

ν=1

λn
a − kν − nic/2
λn

a − kν + nic/2

∏
mblj

λn
a − λm

b + (n− 2j −m+ 2l + 2)ic/2
λn

a − λm
b + (n− 2j −m+ 2l − 2)ic/2

∀ n, a (3.5)

The final step to simplifying these equations is to evaluate the products over j and l

in the second level equation

∏
lj

λn
a − λm

b + (n− 2j −m+ 2l + 2)ic/2
λn

a − λm
b + (n− 2j −m+ 2l − 2)ic/2

∀ n, a (3.6)

Multiplying over j first, we find that once again, denominators and numerators cancel,
this time leaving the first two numerators and the final two denominators.

∏
lj

λn
a − λm

b + (n− 2j −m+ 2l + 2)ic/2
λn

a − λm
b + (n− 2j −m+ 2l − 2)ic/2

=
∏
l

λn
a − λm

b + (2l + n−m)ic/2
λn

a − λm
b + (2l − n−m)ic/2

· λ
n
a − λm

b + (2l + n−m− 2)ic/2
λn

a − λm
b + (2l − n−m− 2)ic/2

(3.7)

Next, we write this product out in full. Noticing that every numerator has a denominator
which is its complex conjugate, we recombine the product by pairing these two components
together.

∏
lj

λn
a − λm

b + (n− 2j −m+ 2l + 2)ic/2
λn

a − λm
b + (n− 2j −m+ 2l − 2)ic/2

=
∏
l

λn
a − λm

b + (2l + n−m)ic/2
λn

a − λm
b − (2l + n−m)ic/2

· λ
n
a − λm

b + (2l + n−m− 2)ic/2
λn

a − λm
b − (2l + n−m− 2)ic/2

(3.8)

This is as far as can be simplified for the moment. After taking logarithms, further
simplifications may be made. Our final BAE using the string hypothesis are then

eikiL = −
N∏

j=1

ki − kj + ic
ki − kj − ic

∏
na

ki − λn
a − nic/2

ki − λn
a + nic/2

i = 1, . . . N

1 = −
N∏

ν=1

λn
a − kν − nic/2
λn

a − kν + nic/2∏
mbl

λn
a − λm

b + (2l + n−m)ic/2
λn

a − λm
b − (2l + n−m)ic/2

· λ
n
a − λm

b + (2l + n−m− 2)ic/2
λn

a − λm
b − (2l + n−m− 2)ic/2

∀ n, a (3.9)
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3.4 Logarithmic Form

String Hypothesis

The BAE can be simplified by defining Sa(x) = x+iac
x−iac . Then we may write the equations

as

eikνL = −
N∏

j=1

S1(kν − kj)
∏
n,a

S−n/2(kν − λn
a) ν = 1, . . . N

1 = −
N∏

ν=1

S−n/2(λ
n
a − kν)∏

m,b,l

S(2l+n−m)/2(λ
n
a − λm

b )S(2l+n−m−2)/2(λ
n
a − λm

b ) ∀ n, a (3.10)

Start by taking the logarithm of both sides, allowing for a non-principal logarithm.
Recall that ln(−1) = πi. With Iν and Jn

a integers, we obtain

ikνL = (2πIν + π)i +
N∑

j=1

ln(S1(kν − kj))

+
∑
n,a

ln(S−n/2(kν − λn
a)) ν = 1, . . . N

0 = (2πJn
a + π)i +

N∑
ν=1

ln(S−n/2(λ
n
a − kν)) +

∑
m,b,l

(ln(S(2l+n−m)/2(λ
n
a − λm

b ))

+ ln(S(2l+n−m−2)/2(λ
n
a − λm

b ))) ∀ n, a (3.11)

We now turn our attention to ln(Sa(x)). By considering sine and cosine as the sum of
exponentials, we can write arctan as a logarithm.

arctan(x) =
1
2i

ln
(

1 + ix
1− ix

)
Using the identities arctan(x) = π/2 − arctan(1/x) for x > 0 and arctan(x) = −π/2 −
arctan(1/x) for x < 0 we can rewrite this expression as

ln
(
x+ i
x− i

)
= i(signum(x)π − 2 arctan(x))

Thus, we can write ln(Sa(x)) = i
(
signum

(
x
a

)
π − 2 arctan

(
x
ca

))
. Define Θa(x) =

−2 arctan
(

x
ca

)
. The Bethe ansatz equations then become

kνL = (2πIν + π) +
N∑

j=1

(Θ1(kν − kj) + π signum(kν − kj))

+
∑
n,a

(Θ−n/2(kν − λn
a)− π signum(kν − λn

a)) ν = 1, . . . N
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0 = (2πJn
a + π) +

N∑
ν=1

(Θ−n/2(λ
n
a − kν)− π signum(λn

a − kν))

+
∑
m,b,l

((Θ(2l+n−m−2)/2(λ
n
a − λm

b ) + π signum
(

λn
a − λm

b

2l + n−m− 2

)
)

+ (Θ(2l+n−m)/2(λ
n
a − λm

b ) + π signum
(

λn
a − λm

b

2l + n−m

)
)) ∀ n, a (3.12)

As Iν and Jn
a are integers, adding some multiple of 2π to each of these equations only

adjusts the integer, and does not change the actual form of the equations. Thus, we can
drop the signums, effectively adding 2π for each negative signum term. The sums over
constant π may then be performed. We shift Jn

a to the opposite side of the equation,
which may also be seen as subtracting 2π sufficiently many times. Thus

kνL = 2πIν + π + (N +M)π +
N∑

j=1

Θ1(kν − kj) +
∑
n,a

Θ−n/2(kν − λn
a) ν = 1, . . . N

2πJn
a = π + (N +M)π +

N∑
ν=1

Θ−n/2(λ
n
a − kν)

+
∑
m,b,l

(Θ(2l+n−m)/2(λ
n
a − λm

b ) + Θ(2l+n−m−2)/2(λ
n
a − λm

b )) ∀ n, a (3.13)

Finally, we rename Iν and Jn
a to incorporate the (M + N + 1)π terms. We find that

for N +M odd, Iν and Jn
a are integers, whereas for N +M even, they are half-integral.

Now

kνL = 2πIν +
N∑

j=1

Θ1(kν − kj) +
∑
n,a

Θ−n/2(kν − λn
a) ν = 1, . . . N

2πJn
a =

N∑
ν=1

Θ−n/2(λ
n
a − kν)

+
∑
m,b,l

(Θ(2l+n−m)/2(λ
n
a − λm

b ) + Θ(2l+n−m−2)/2(λ
n
a − λm

b )) ∀ n, a (3.14)

The last sum in the second level equation may be simplified by expanding the sum over
l. Of the m + 1 terms present, the leading and trailing terms have coefficients of unity,
whilst the inner terms have coefficients of 2. The leading term is of the form Θ(n+m)/2,
whilst the trailing term is of the form Θ(n−m)/2. Next, noting that Θa is an odd function
in a, terms of the form Θ−x will cancel out terms of the form Θx, leaving a trailing term
of the form Θ|n−m|/2 with coefficient unity. Note, however, that any terms of the form Θ0

have a coefficient of zero, as Θ0 is undefined and occurs only as a result of ln(S0(x)) = πi,
which has already been absorbed into Jn

a . Thus, we rewrite the sum as a sum over all
possible Θx, where the coefficient of each term is dependent upon x:∑

m,b,t6=0

AnmtΘt/2(λ
n
a − λm

b )

Anmt =


1 for t = n+ l, |n− l|
2 for t = n+ l − 2, . . . , |n− l|+ 2
0 otherwise

(3.15)
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Our final version of the BAE then becomes

kνL = 2πIν +
N∑

j=1

Θ1(kν − kj) +
∑
n,a

Θ−n/2(kν − λn
a) ν = 1, . . . N

2πJn
a =

N∑
ν=1

Θ−n/2(λ
n
a − kν)

+
∑

m,b,t6=0

AnmtΘt/2(λ
n
a − λm

b ) ∀ n, a (3.16)

These are known as the Bethe ansatz equations in logarithmic form. In all, there are
M +N equations.

Low Temperature Approximation

To obtain the low temperature approximation from the string hypothesis equations, all
that needs to be done is assume that only strings of length one exist, which means that
all spin rapidities become real. The BAE become

kνL = 2πIν +
N∑

j=1

Θ1(kν − kj) +
M∑

γ=1

Θ−1/2(kν − λγ) ν = 1, . . . , N

2πJγ =
N∑

ν=1

Θ−1/2(λγ − kν) +
M∑

µ=1

Θ1(λγ − λµ) γ = 1, . . . ,M (3.17)

There are still M +N equations in all.

3.5 Quantum Numbers

The numbers Iν and Jn
a (or Jγ , for the low temperature approximation) can be thought

of as quantum numbers for the model. By differencing two quantum numbers Im and
In (m 6= n), it can be seen that if Im = In, then km = kn, making the wavefuncion
degenerate. Thus, no two {Iν} may be the same. Similarly for Jn

a and λn
a , and so our

quantum numbers are well behaved (“good” quantum numbers).
The momentum for the system may be written in terms of these quantum numbers:

P =
∑

l kl = (
∑

ν Iν−
∑

n,a J
n
a )2π/L. It is easiest to work backwards rather than forwards

to show this, remembering that Θ(x) is an odd function.

3.6 Integral Bethe Ansatz Equations

{Iν} and {Jn
a } play the role of quantum numbers for the charge and spin rapidities respec-

tively (see Section 2.2.4 for a description of charge and spin). For a particular configura-
tion, if an arbitrary quantum number is chosen, it is either occupied (in the set of quantum
numbers for the system), or it is not. Following Gu et al. [29], we term the former a root,
and the latter a hole. In the thermodynamic limit, the distribution of charge rapidities
becomes dense, and so we introduce the density function of charge roots and holes. Define
ρ(k) and ρh(k) to be the densities of charge roots and holes, respectively. For the spin
rapidities, we define σn(λ) and σh

n(λ) to be the densities of the n-string (strings of length
n) roots and holes in λ-space.
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Treating I as a continuous function of k, for every integer that I increases, one more
space for a root or a hole is created. Call the total number of particles and holes per unit
length ε. Then we find

dI(k)/dk = Ldε/dk = L(ρ(k) + ρh(k)). (3.18)

Similarly, by treating Jn as a continuous function of λ, we have

(1/L) dJn(λ)/dλ = σn(k) + σh
n(k) (3.19)

String Hypothesis

The next step is to take the continuous limit of the logarithmic form of the Bethe ansatz
equations, changing to continuous I and Jn, and moving from summations to integrals.
We treat all integrals as having limits of −∞ to∞ and suppress the limits in the equations,
unless indicated otherwise.

I(k)
L

=
k

2π
− 1

2π

∫
Θ1(k − k′) ρ(k′) dk′

−
∑
n

1
2π

∫
Θ−n/2(k − λ′)σn(λ′) dλ′ (3.20)

Jn(λ)
L

=
1
2π

∫
Θ−n/2(λ− k′) ρ(k′) dk′

+
1
2π

∑
m,t6=0

Anmt

∫
Θt/2(λ− λ′)σm(λ′) dλ′ (3.21)

We then differentiate both sides of the first level equation by k, and substitute for
dI(k)/dk from equation 3.18, whilst doing the same for the second level equations with λ
and dJn(λ)/dλ. In this way

ρ(k) + ρh(k) =
1
2π

+
∫
K2(k − k′) ρ(k′) dk′

−
∑
n

∫
Kn(k − λ′)σn(λ′) dλ′ (3.22)

σn(k) + σh
n(k) =

∫
Kn(λ− k′) ρ(k′) dk′

−
∑

m,t6=0

Anmt

∫
Kt(λ− λ′)σm(λ′) dλ′ (3.23)

where Kn(x) = nc/2π(n2c2/4+x2). Note that all integrals are actually convolutions, and
so the equations may be compactly written

ρ(k) + ρh(k) =
1
2π

+K2(k) ∗ ρ(k)−
∑
n

Kn(k) ∗ σn(k) (3.24)

σn(k) + σh
n(k) = Kn(λ) ∗ ρ(λ)−

∑
m,t6=0

AnmtKt(λ) ∗ σm(λ) (3.25)

with ∗ denoting integral convolution. These are known as the integral Bethe ansatz equa-
tions.

These densities are particularly useful, as all basic quantities can be written in terms
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of them. For example, kinetic energy per unit length is given by Ek/L =
∫
k2ρ(k) dk,

particle number per unit length by D = N/L =
∫
ρ(k) dk, and number of down spins by

M/L =
∑

n n
∫
σn(λ) dλ.

Low Temperature Approximation

The integral BAE using the string hypothesis reduce simply to the low temperature ap-
proximation by once again assuming that only strings of length one exist. The above
equations are modified thus:

ρ(k) + ρh(k) =
1
2π

+K2(k) ∗ ρ(k)−K1(k) ∗ σ(k) (3.26)

σ(k) + σh(k) = K1(λ) ∗ ρ(λ)−K2(λ) ∗ σ(λ) (3.27)

Equations for kinetic energy, particle density and the density of spin down particles are
the same as above, reducing the sum for M/L to strings of length one only.

3.7 The Thermodynamic Bethe Ansatz

To obtain the conditions on the system for a state of thermodynamic equilibrium, we need
to construct the Helmholtz free energy, and minimise it with regards to the density func-
tions ρ and σn, constrained to equations 3.24 and 3.25. The Helmholtz free energy is used
as it represents the free energy at constant temperature and volume (or in one dimension,
length), which are the conditions under which we desire our equilibrium equations. We
use the Helmholtz free energy from the grand partition function, F = −kBT ln(Z). This
gives the free energy F in terms of the energy E, the temperature T , the entropy S, and
the number of particles N , where we use µ to denote the chemical potential. Since we
are working in the thermodynamic limit, we deal with quantities per unit length, as the
quantities themselves are meaningless (infinite). Once again, integration from −∞ to ∞
is implied unless specified otherwise.

F/L = E/L− TS/L− µN/L (3.28)

The String Hypothesis

The energy of the system is the sum of the kinetic energy and any energy arising from
external fields, as indicated in the Hamiltonian for the system (equation 2.5). We thus
use

E/L = Ek/L+ Ω(2M/L−N/L)

=
∫
k2ρ(k) dk + Ω(2

∑
n

n

∫
σn(λ) dλ−

∫
ρ(k) dk)

=
∫

(k2 − Ω)ρ(k) dk +
∑
n

2nΩ
∫
σn(λ) dλ (3.29)

Here T is the temperature of the system and S/L the entropy per unit length. µ is the
chemical potential, which does not depend on the density functions. We use the equation
for N/L given above (Section 3.6).

In their seminal paper, Yang and Yang [28] developed an expression for the entropy of
the spinless Bose gas at finite temperature by constructing a statistical weight, considering
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all possible arrangements of charge particles. Following the same method and treating spin
rapidities as extra particles (as discussed in Section 2.2.4), the entropy of the spinor boson
system is given by

S/L =
∫

[(ρ+ ρh) ln(ρ+ ρh)− ρ ln(ρ)− ρh ln(ρh)] dk

+
∑
n

∫
[(σn + σh

n) ln(σn + σh
n)− σn ln(σn)− σh

n ln(σh
n)] dλ (3.30)

The first integral is the entropy of the spinless boson gas as presented by Yang and Yang.
It is logical that the addition of extra quantum numbers will add to the entropy in a
similar manner.

When we minimise this quantity with respect to ρ and σn, it is useful to have these
terms cast in a different way through simple logarithm manipulations.

(ρ+ ρh) ln(ρ+ ρh)− ρ ln(ρ)− ρh ln(ρh)

≡ (ρ+ ρh) ln(1 + ρ/ρh) + ρ ln(ρh/ρ)

(σn + σh
n) ln(σn + σh

n)− σn ln(σn)− σh
n ln(σh

n)

≡ (σn + σh
n) ln(1 + σn/σ

h
n) + σn ln(σh

n/σn) (3.31)

Before proceeding, let us define some new quantities:

κ(k) = eε(k)/T = ρh(k)/ρ(k)

ηn(λ) = eξn(λ)/T = σh
n(λ)/σn(λ) (3.32)

We are now ready to minimise the free energy, which may be written in full as

F/L =
∫

(k2 − Ω)ρ(k) dk +
∑
n

2nΩ
∫
σn(λ) dλ

− T

∫
[(ρ+ ρh) ln(1 + κ−1) + ρ ln(κ)] dk

− T
∑
n

∫
[(σn + σh

n) ln(1 + η−1
n ) + σn ln(ηn)] dλ− µ

∫
ρ(k) dk

=
∫

[(k2 − Ω− µ− T ln(κ))ρ(k)− T (ρ+ ρh) ln(1 + κ−1)] dk

+
∑
n

∫
[(2nΩ− T ln(ηn))σn(λ)− T (σn + σh

n) ln(1 + η−1
n )] dλ (3.33)

We use equations 3.24 and 3.25 as constraints on ρ and σn. We now use the variational
method, varying F by ρ and σm, such that δF/L = Aδρ +

∑
nBnδσn = 0. A and

Bn represent expressions multiplying the variances in ρ and σn respectively, and by the
independence of ρ and σm, A and Bm must be zero.

δF/L =
∫

[(k2 − Ω− µ− T ln(κ))δρ(k)− Tδ[(ρ+ ρh) ln(1 + κ−1)]] dk

+
∑
n

∫
[(2nΩ− T ln(ηn))δσn(λ)− Tδ[(σn + σh

n) ln(1 + η−1
n )]] dλ (3.34)
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Because Kn is an even function, from manipulating the order of integration and re-
naming dummy variables, it can be shown that δ[(Kn(k) ∗ ρ(k)) ln(1 + η−1

n )] = Kn(k) ∗
[ln(1 + η−1

n )]δ(ρ(k)). We thus have

δ[(ρ+ ρh) ln(1 + κ−1)] = K2(k) ∗ ln(1 + κ−1)δρ(k)−
∑
n

Kn(k) ∗ ln(1 + κ−1)δσn(k)

δ[(σn + σh
n) ln(1 + η−1

n )] = Kn(λ) ∗ ln(1 + η−1
n )δρ(λ)

−
∑

m,t6=0

AnmtKt(λ) ∗ ln(1 + η−1
n )δσm(λ) (3.35)

Combining these, we obtain

δF/L =
∫

[(k2 − Ω− µ− T ln(κ))δρ(k)− TK2(k) ∗ ln(1 + κ−1)δρ(k)

+ T
∑
n

Kn(k) ∗ ln(1 + κ−1)δσn(k)] dk

+
∑
n

∫
[(2nΩ− T ln(ηn))δσn(λ)− TKn(λ) ∗ ln(1 + η−1

n )δρ(λ)

+ T
∑

m,t6=0

AnmtKt(λ) ∗ ln(1 + η−1
n )δσm(λ)] dλ (3.36)

Changing the dummy variables of summation for the final term, swapping m and n, then
rearranging and changing dummy variables of integration, we arrive at

δF/L =
∫ [

k2 − Ω− µ− T ln(κ)− TK2(k) ∗ ln(1 + κ−1)

− T
∑
n

Kn(k) ∗ ln(1 + η−1
n )

]
δρ(k) dk

+
∑
n

T

∫ [2nΩ
T

− ln(ηn) +Kn(λ) ∗ ln(1 + κ−1)

+
∑

m,t6=0

AnmtKt(λ) ∗ ln(1 + η−1
m )

]
δσn(λ) dλ (3.37)

By the independence of δρ(k) and δσn(λ), we thus obtain the following two conditions
for δF/L = 0.

k2 − Ω− µ− T ln(κ)− TK2(k) ∗ ln(1 + κ−1)− T
∑
n

Kn(k) ∗ ln(1 + η−1
n ) = 0

2nΩ
T

− ln(ηn) +Kn(λ) ∗ ln(1 + κ−1) +
∑

m,t6=0

AnmtKt(λ) ∗ ln(1 + η−1
m ) = 0 (3.38)

These become our TBA equations.

T ln(κ) = ε(k) = k2 − Ω− µ− TK2(k) ∗ ln(1 + κ−1)− T
∑
n

Kn(k) ∗ ln(1 + η−1
n )(3.39)

ln(ηn) =
ξn(λ)
T

=
2nΩ
T

+Kn(λ) ∗ ln(1 + κ−1) +
∑

m,t6=0

AnmtKt(λ) ∗ ln(1 + η−1
m ) (3.40)

Note that this second equation actually represents an infinite number of equations, one
for each string length n. This provides difficulties for attempting numerical simulations,
as the number of variables to solve the coupled integral equations over is prohibitive, and
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thus must be terminated at some point.

Low Temperature Approximation

Once again, the low temperature approximation version of the TBA equations can be
obtained by assuming strings of length one only. The TBA equations in a low temperature
approximation are:

T ln(κ) = ε(k) = k2 − Ω− µ− TK2(k) ∗ ln(1 + κ−1)− TK1(k) ∗ ln(1 + η−1) (3.41)

ln(η) =
ξ(λ)
T

=
2Ω
T

+K1(λ) ∗ ln(1 + κ−1) +K2(λ) ∗ ln(1 + η−1) (3.42)

3.8 Alternate Form of the Thermodynamic Bethe Ansatz

Equations

The second TBA equation using the string hypothesis (equation 3.40) may be recast in
another fashion which eliminates the infinite sums. Start by writing ln(ηn) = ln(1 + ηn)−
ln(1 + η−1

n ), and define K0(x) = δ(x). Then

ln(1 + ηn) = Kn(λ) ∗ ln(1 + κ−1) + 2nΩ/T +
∑
m,t

AnmtKt(λ) ∗ ln(1 + η−1
m ) (3.43)

Using the distributive property of convolutions, we can expand the sum over t, and
change notation slightly to simplify the expression visually. This also has the effect of
simplifying the Fourier transforms which we will take later. We write

∑
tAnmtKt(λ) =

Kn+m + 2Kn+m−2 + . . .+ 2K|n−m|+2 +K|n−m| = Anm. So

ln(1 + ηn) = Kn(λ) ∗ ln(1 + κ−1) + 2nΩ/T +
∑
m

Anm ∗ ln(1 + η−1
m ) (3.44)

By taking Fourier transforms, it is possible to calculate an inverse for Anm in w-space,
which obeys the relations

∞∑
m=1

Â−1
nm(w)Âmn′(w) = δnn′

∞∑
m=1

A−1
nm(λ) ∗Amn′(λ) = δnn′δ(λ)

∞∑
m=1

A−1
nm(λ) ∗Kn(λ) = δn1

1
2c cosh(πλ/c)

∞∑
m=1

A−1
nm(λ) ∗m = 0

We find that A−1
nm(λ) = δ(λ)δnm − 1

2c cosh(πλ/c)(δn,m+1 + δn,m−1).
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Using these relations, we convolute equation 3.44 with A−1
nl (λ), and sum over n =

1 . . .∞. By exploiting the fact that the convolution operator is associative, we obtain

∞∑
n=1

A−1
nl ∗ ln(1 + ηn) =

∞∑
n=1

A−1
nl ∗Kn(λ) ∗ ln(1 + κ−1) +

∞∑
n=1

A−1
nl ∗ 2nΩ/T

+
∑
m

∞∑
n=1

A−1
nl ∗Anm ∗ ln(1 + η−1

m )

= δl1
1

2c cosh(πλ/c)
∗ ln(1 + κ−1) +

∑
m

δlmδ(λ) ∗ ln(1 + η−1
m )

= δl1
1

2c cosh(πλ/c)
∗ ln(1 + κ−1) + ln(1 + η−1

l ) (3.45)

We now use the definition of A−1
mn to arrive at

ln(ηl)−
1

2c cosh(πλ/c)
∗ ln(1 + ηl+1)− (1− δl1)

1
2c cosh(πλ/c)

∗ ln(1 + ηl−1)

= δl1
1

2c cosh(πλ/c)
∗ ln(1 + κ−1) (3.46)

This separates into two equations:

ln(η1) =
1

2c cosh(πλ/c)
∗ ln[(1 + κ−1)(1 + η2)]

ln(ηn) =
1

2c cosh(πλ/c)
∗ ln[(1 + ηn+1)(1 + ηn−1)] for n > 1 (3.47)

Note that there is no low temperature approximation equivalent of this form, which
explicitly relies upon the existence of an infinite number of possible string lengths. These
equations are concluded by the following asymptotic condition

lim
n→∞

ln(ηn)/n =
2Ω
T

(3.48)

which has been derived by Takahashi [31].
Finally, we present the thermodynamic Bethe ansatz equations in full

T ln(κ) = ε(k) = k2 − Ω− µ− TK2(k) ∗ ln(1 + κ−1)− T
∑
n

Kn(k) ∗ ln(1 + η−1
n )

ln(η1) =
1

2c cosh(πλ/c)
∗ ln[(1 + κ−1)(1 + η2)]

ln(ηn) =
1

2c cosh(πλ/c)
∗ ln[(1 + ηn+1)(1 + ηn−1)] for n > 1

complete with asymptotic condition

lim
n→∞

ln(ηn)/n =
2Ω
T

(3.49)

3.9 The Helmholtz Free Energy

If the solution ε(k) can be found to the TBA equations, then the Helmholtz free energy
may be calculated. As we now have a fixed number of particles, instead of calculating the
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Helmholtz free energy from the grand partition function Z, we use the partition function
Z, obtaining: F = −kBT ln(Z) = E − TS. Although we do not change the notation to
account for this, all references to the (Helmholtz) free energy from now on will use this
definition. We present here a derivation of the relation.

Firstly

F/L = E/L− TS/L

=
∫

(k2 − Ω)ρ(k) dk +
∑
n

2nΩ
∫
σn dλ

− T

∫
[(ρ+ ρh) ln(ρ+ ρh)− ρ ln(ρ)− ρh ln(ρh)] dk

− T
∑
n

∫
[(σn + σh

n) ln(σn + σh
n)− σn ln(σn)− σh

n ln(σh
n)] dλ

=
∫

(k2 − Ω)ρ(k) dk +
∑
n

2nΩ
∫
σn dλ

− T

∫
[(ρ+ ρh) ln(1 + κ−1) + ρ ln(κ)] dk

− T
∑
n

∫
[(σn + σh

n) ln(1 + η−1
n ) + σn ln(ηn)] dλ (3.50)

Substitute equations 3.24 and 3.25 in here to give

F/L =
∫

(k2 − Ω− T ln(κ))ρ(k) dk +
∑
n

∫
(2nΩ− T ln(ηn))σn dλ

− T

∫ ( 1
2π

+K2(k) ∗ ρ(k)−
∑
n

Kn(k) ∗ σn(k)
)

ln(1 + κ−1) dk

− T
∑
n

∫ (
Kn(λ) ∗ ρ(λ)−

∑
m,t6=0

AnmtKt(λ) ∗ σm(λ)
)
ln(1 + η−1

n ) dλ (3.51)

We now use the first TBA equation (equation 3.39) to substitute for k2−Ω− T ln(κ),
and reverse the order of integration on various convolutions in order to cancel terms, with

F/L =
∫

(µ+ TK2(k) ∗ ln(1 + κ−1) + T
∑
n

Kn(k) ∗ ln(1 + η−1
n )) ρ(k) dk

+
∑
n

∫
(2nΩ− T ln(ηn))σn dλ

− T

∫ ( 1
2π

+K2(k) ∗ ρ(k)−
∑
n

Kn(k) ∗ σn(k)
)

ln(1 + κ−1) dk

− T
∑
n

∫ (
Kn(λ) ∗ ρ(λ)−

∑
m,t6=0

AnmtKt(λ) ∗ σm(λ)
)

ln(1 + η−1
n ) dλ

=
∫
µρ(k) dk +

∑
n

∫
(2nΩ− T ln(ηn))σn dλ

− T

∫ ( 1
2π

−
∑
n

Kn(k) ∗ σn(k)
)

ln(1 + κ−1) dk

+ T
∑
n

∫ ( ∑
m,t6=0

AnmtKt(λ) ∗ σm(λ)
)

ln(1 + η−1
n ) dλ (3.52)
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Next, substitute for the second TBA equation (equation 3.40) to give

F/L = µ
N

L
+
∑
n

∫ (
2nΩ− TKn(λ) ∗ ln(1 + κ−1)− 2nΩ

)
σn

−
∑
n

∫ (
T
∑

m,t6=0

AnmtKt(λ) ∗ ln(1 + η−1
m )

)
σn dλ

− T

∫ ( 1
2π

−
∑
n

Kn(k) ∗ σn(k)
)

ln(1 + κ−1) dk

+ T
∑
n

∫ ( ∑
m,t6=0

AnmtKt(λ) ∗ σm(λ)
)

ln(1 + η−1
n ) dλ

= µ
N

L
− T

∑
n

∫ ( ∑
m,t6=0

AnmtKt(λ) ∗ ln(1 + η−1
m )

)
σn dλ− T

2π

∫
ln(1 + κ−1) dk

+ T
∑
n

∫ ( ∑
m,t6=0

AnmtKt(λ) ∗ σm(λ)
)

ln(1 + η−1
n ) dλ

= µ
N

L
− T

2π

∫
ln(1 + κ−1) dk (3.53)

Thus we can write

F = µN − TL

2π

∫ ∞

−∞
ln(1 + e−ε(k)/T ) dk (3.54)

The same result holds in the low temperature approximation.
We note that F = µN −PV also holds (where V is volume), and so we may write the

pressure of the system as

P =
T

2π

∫ ∞

−∞
ln(1 + e−ε(k)/T ) dk (3.55)

The quantity of most interest that comes from the free energy is the heat capacity at
constant temperature, given by

S = −
[
∂F

∂T

]
V,N

Cv = T

[
∂S

∂T

]
V,N

(3.56)

where S is the entropy of the system.

3.10 Summary

Let us briefly pause to recapitulate on what we have covered so far.
Last chapter, we started with the Hamiltonian for the spinor Bose gas, and used the

Bethe ansatz (trial wavefunction) to find a solution. From this ansatz, we obtained an
expression for energy and momentum in terms of the pseudomomenta variables ki.

We then made sure that the coefficients of each term in the ansatz obeyed certain
criteria, namely symmetry under particle interchange, periodic boundary conditions, con-
tinuity, and discontinuity in the derivative at the δ-functions. These four criteria led to a
series of conditions being placed on the pseudomomenta, called the Bethe ansatz equations
(equations 2.17).

In this chapter, we simultaneously developed two forms of the Bethe ansatz equations,
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one in a low temperature approximation with real string rapidities, and one assuming
the string hypothesis. We started by taking the logarithm of the Bethe ansatz equations,
taking into account the possibility of non-principal values, to arrive in their logarithmic
form (equations 3.17 and 3.16). Next, we took the thermodynamic limit, and found the
Bethe ansatz equations in integral form (equations 3.24 and 3.24, equations 3.27), which
describe the root density of the charge and spin pseudoparticles.

Next, we constructed the Helmholtz free energy for the system, which we then
proceeded to minimise with regards to the charge and spin root densities. By minimising
the free energy, we obtained conditions on the system when it is in thermal equilibrium.
We obtained the thermodynamic Bethe ansatz equations, both using the string hypothesis
(equations 3.39 and 3.40), and in the low temperature approximation (equations 3.41
and 3.42). We then presented an alternate form of the TBA equations using the string
hypothesis (equations 3.49). Finally, we derived an expression for the Helmholtz free
energy in terms of the solution to the TBA equations (equation 3.54).

The significance of these equations is that if the thermodynamic Bethe ansatz equations
can be solved along with the integral form of the Bethe ansatz equations, then the system
is completely described for thermal equilibrium, and the excited states of the system may
be characterised. Furthermore, once these equations are solved, all of the thermodynamics
of the system may then be calculated.

In the next chapter, we take a look at fractional exclusion statistics, before returning
to analyse the BAE and TBA equations in some limiting cases in Chapter 5.
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Chapter 4

Fractional Exclusion Statistics and

the Thermodynamic Bethe Ansatz

A statistical approach is often adopted in thermodynamics, rather than attempts to fol-
low each and every particle. Because of the number of particles usually involved, using
probabilities and statistics is known to be a relatively precise way of treating systems.
The most basic statistical model is that of Maxwell-Boltzmann statistics, which assumes
that all particles are distinguishable. Starting with the Gibbs paradox, and following the
advent of quantum mechanics, it was decided that identical particles were indistinguish-
able, and so quantum statistics was born. There are two main components to quantum
statistical mechanics: Fermi-Dirac statistics, which assumes that in any state, there may
only be one particle at a time, and Bose-Einstein statistics, which assumes that there may
be any number of particles in the same state.

In between these two extremes lies an area known as fractional exclusion statistics.
Here, the number of particles that may occupy a state is not necessarily infinity nor one,
and may behave unexpectedly. “Fractional Statistics and Quantum Theory” by Khare [32]
presents an overview of different types of fractional statistics, including Haldane exclusion
statistics, Gentile statistics, and Polychronakos statistics in Chapter 5. The book as a
whole deals with anyonic fractional statistics.

Another way of thinking about the statistics of particles is to say that it defines the
phase change that a wavefunction gains upon the interchange of two particles. For bosons,
this phase change is zero, whilst for fermions, this phase change is −1. When dealing
with anyons however, the phase change upon particle interchange may be an arbitrary
eiθ, 0 ≤ θ ≤ π. As anyons exist in two dimensions, whether to take the positive of this
phase change or the negative depends on whether the interchange occurs clockwise or
counterclockwise.

Specifically with regards to the Bethe ansatz model, a branch of fractional exclusion
statistics known as Haldane exclusion statistics has been shown to apply to the spinless
boson. In this chapter, we present Haldane exclusion statistics, some thermodynamics
which may be derived from the principle, and discuss its implementation with regards to
the spinless boson. We then discuss the spinor boson with regards to Haldane exclusion
statistics.

4.1 Haldane Exclusion Statistics

In 1991, Haldane [22] introduced a generalisation of the Pauli exclusion principle. The
basic tenet of this generalisation is the counting of the dimensionality of Hilbert spaces.
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Here we present the construction of this generalisation as discussed in Haldane’s original
paper.

Consider a Hilbert space Ha of states of a single particle of species a in a quantum
system, and assume that dim[Ha] = da is finite and extensive. The Hilbert space is then
spanned by da basis functions, φa

ν(r), ν = 1 . . . da. Note that identical particles are not
necessarily in the same species.

Now consider the wave function of an N -particle system. Denote the coordinates and
species of each of these particles by {ri, ai; i = 1, . . . , N}, and call Na the number of
particles within species a. If the coordinates of the N − 1 particles with labels j 6= i are
held fixed, then the wavefunction Ψ may be expanded in a basis of the wavefunctions of
particle i, such that

Ψ =
∑
µ

Aν({rj , aj ; j 6= i})φai
ν (ri)

The set of functions φai
ν span a one-particle Hilbert space Hai , which has dimensions

daI ({Nai}). This dimension must be independent of the coordinates of the particles la-
belled j 6= i, and must be the same for all identical particles of the same species, depend-
ing only on the boundary conditions of the system, and the distribution of other particles
within the system {Nai}.

Keeping the boundary conditions and volume of the system constant, dai will change
as particles are added or removed from the system. This provides the basic notion of
statistics developed by Haldane. Assuming the relation between the change in dimension
and the change in particle number is linear, we define the statistical interaction gab to
account for these changes through the difference relation

∆da = −
∑

b

gab∆Nb (4.1)

where {∆Nb} is a set of allowed changes to the particle numbers of each species, and the
sum runs over all particle species. This essentially implies that as a particle of species a
is added to the system, the dimensionality of the Hilbert space of species b may change,
according to this relation. This equation is essentially the definition of Haldane exclusion
statistics (sometimes called Haldane-Wu exclusion statistics). In differential form, this
equation may be written

∂da

∂Nb
= −gab (4.2)

This statistical interaction has a number of properties. To start with, gab is not nec-
essarily symmetrical. In order for a thermodynamic limit to exist using extensive Hilbert
space dimensions, gab must be independent of the number of particles of each species
within the system. Curiously, the existence of a thermodynamic limit also requires that
gab is rational, so that the limit may be achieved through a sequence of finite increases in
size and particle numbers.

This definition has two limiting cases which correspond to Bose-Einstein statistics and
Fermi-Dirac statistics. Letting gab = 0 implies that the dimensionality of the Hilbert
spaces doesn’t change as particles are added, essentially allowing an infinite number of
particles of each species in the system. This corresponds to Bose-Einstein statistics. On
the other hand, Fermi-Dirac statistics are achieved by gab = δab, and so adding a particle
of species a decreases the number of particles of species a that may be added to the system
by one. It also means that species b is unaffected by the addition of particles of species a.
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A few theoretical models have been shown to obey Haldane exclusion statistics, includ-
ing Laughlin quasiparticles which have g = 1/m, and 1D spinons, which have g = 1/2,
where only one species exists in each of these models [33]. More importantly, it has also
been shown that the topological excitations of the fractional quantum Hall effect can be
explained by Haldane exclusion statistics, giving rise to the same results derived from the
braid group, which have been experimentally verified.

This way of defining statistics can lead to some strange consequences, the most obvious
of which is fractional dimensions. There are some more esoteric consequences that arise
from the definition, such as negative probabilities, which have even stranger resolutions.
Khare [32] gives a good overview of Haldane Exclusion Statistics in Chapter 5 of his book.

Particles which obey Haldane exclusion statistics have been coined “exclusons”. When
the statistics are such that there are interspecial interactions, the particles are said to have
“mutual statistics”, while if particles only interact with other particles of the same species,
they are said to have “non-mutual statistics”, and are called “g-ons”.

4.2 Thermodynamics from Haldane’s Principle

In this section, we take Haldane exclusion statistics, and combine it with conventional
thermodynamics to find how the statistical interaction affects thermodynamic properties.
Rather than giving derivations of the following, we refer to the papers in which they were
published.

In calculating the number of different possible states of N particles given a group of
G states in quantum statistical mechanics, thermodynamic textbooks give the statistical
weight as

Wb =
(G+N − 1)!
N !(G− 1)!

for bosons

Wf =
G!

N !(G−N)!
for fermions

Through a simple interpolation, Wu [34] has shown that fractional statistics for one species
may be written as

W =
(G+ (N − 1)(1− α))!
N !(G− αN − (1− α))!

Note that Wu has used α to represent the statistical interaction. Wu also gives the result

W =
∏
i

(Gi +Ni − 1−
∑

j αij(Nj − δij))
(Ni)!(Gi − 1−

∑
j αij(Nj − δij))!

for multiple species.
From the statistical weight, Wu derived the grand partition function, using the ideal gas

assumption that the energy is a simple sum over particle numbers times energy eigenvalues.
In the case of non-mutual statistics (statistics only between particles of the same species),
where αij = αδij and µi = µ, a statistical distribution may be derived of the form

ni =
1

w(e(εi−µ)/kBT ) + α
(4.3)
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where w(x) satisfies w(x)α(1+w(x))1−α = x. εi refers to the energy of species i. Note that
α = 0, 1 reclaims the well known Bose-Einstein and Fermi-Dirac statistics, respectively.
Wu further went on to show how a Fermi-step like structure occurs at T = 0, with
distributions ni = 1/α for εi < EF , and ni = 0 for εi > EF .

Nayak and Wilczek [33] built upon the work of Wu in their paper, deriving the same
relations and also finding the Fermi surface. The coined the name “g-ons” to describe
particles that obey non-mutual Haldane exclusion statistics, after the symbol often used
to denote the statistical interaction. In their paper, they went on to derive an expansion
of energy and chemical potential in powers of temperature using a Sommerfeld Lemma
style approach (see Appendix A), and discussed the duality property of g-ons, whereby
particles obeying statistical interaction g = 1/β are strongly related to particles obeying
statistical interaction g = β. Khare [32] also discusses this property in Chapter 5 of his
book.

Later, Isakov et al. [23] furthered the work of Nayak and Wilczek. They used Sommer-
feld expansions to calculate expansions for the chemical potential and specific heat at low
temperatures, as well as calculating cluster and virial expansions, all assuming a general
dispersion relation ε(p) = apσ. The chemical potential is

µ = µ0

[
1− π2

6
g

(
D

σ
− 1

)(
kBT

µ0

)2

+ . . .

]
(4.4)

where µ0 = (gρ/∆)σ/D is the chemical potential at T = 0, and ρ = N/V is the particle
density. D is the dimension of the system, and ∆ = a−D/σ/

[
(2
√
πh̄)DΓ(1 +D/2)

]
. The

specific heat is

CV,N

V
=
gDρ

σ

(
kBT

µ0

)[
π2

3
+ 6ζ(3)(1− g)

(
D

σ
− 1

)
kBT

µ0
+ . . .

]
(4.5)

where ζ(x) =
∑∞

k=1
1
kx is the Riemann zeta function.

4.3 FES of the Spinless Boson

In 1994, Wu and Bernard showed that the spinless boson in the thermodynamic limit
obeys Haldane exclusion statistics, with different momenta giving rise to different species.
Here we reproduce their derivation.

Recall the integral Bethe ansatz equations from Chapter 3. When M = 0, there are
no spin down particles, and so M/L =

∑
n n

∫
σn(λ) dλ = 0. Since σn ≥ 0, for the sum of

the integrals to equal zero, σn = 0 ∀ n. Then the first level Bethe ansatz equation, which
corresponds to the spinless boson model, is

ρ(k) + ρh(k) =
1
2π

+K2(k) ∗ ρ(k)

=
1
2π

+
1
2π

∫ ∞

−∞

2c
c2 + (k − k′)2

ρ(k′) dk′ (4.6)

Recalling that (ρ+ ρh)(k) actually refers to the number of particles and holes per unit
length between k and k + dk, we now derive this same quantity from a state counting
picture. Call the total number of allowed particle states of species i, Di({Nj}). Then this
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must be equal to the number of particles of species i already present, plus the dimension-
ality of the Hilbert space of these particles, minus one (as dimensionality one means that
there is no room for more particles). In an equation, Di({Nj}) = Ni + di({Nj})− 1.

Now, integrate equation 4.2 to calculate di({Nj}).

di({Nj}) = G0
i −

∑
j

gijNj

G0
i ≡ di({0}) is a constant, which is interpreted as one more than the number of available

single particles states for species i when there are no particles in the system. Combining
these, we have

Di({Nj}) = Ni +G0
i −

∑
j

gijNj − 1 (4.7)

Dividing by L, the length of the system, and changing to the continuum, we have

Di({Nj})
L

=
Ni

L
+
G0

i

L
− 1
L
−
∫ ∞

−∞
g(ki, k

′)ρ(k′) dk′

=
G0

i − 1
L

−
∫ ∞

−∞
(g(ki, k

′)− δ(ki − k′))ρ(k′) dk′ (4.8)

We now note that Di({Nj})/L is the number of particle states per unit length of species
i which has k = ki, and so this quantity is equivalent to (ρ+ ρh)(ki), with

(ρ+ ρh)(ki) =
G0

i − 1
L

−
∫ ∞

−∞
(g(ki, k

′)− δ(ki − k′))ρ(k′) dk′ (4.9)

We now equate equations 4.6 and 4.9, arriving at

G0
i − 1
L

≡ 1
2π

g(k, k′) = δ(k − k′)− 1
π

c

c2 + (k − k′)2
(4.10)

We note that the first of these equations differs slightly from Wu and Bernard’s paper,
which used slightly different definitions.

Thus, the spinless boson may be thought of as an ideal excluson gas, that is, a gas of
particles with a statistical interaction but no dynamical interaction. The exclusion statis-
tics are based upon different momenta belonging to different species, with the statistical
interaction varying between different species.

We may calculate the energy of our system as in Chapter 3, namely

E/L =
∫ ∞

−∞
ρ(k)ε0(k) dk (4.11)

where ε0 is the dispersion relation. This result highlights that there is no interaction
energy between particles of different momenta. Of most importance, however, is that
the entropy calculated by S = kB lnW , where W is the statistical weight of the system
calculated similarly to above, is the same as the entropy calculated by Yang and Yang [28]
with the correspondence Ni/L ≡ ρ(k) and di({Nj}) ≡ ρh(k). This highlights that any
thermodynamics calculated from the statistical interaction approach will be identical to
that calculated through the TBA approach.
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4.4 FES of the Spinor Boson

Given the success of applying fractional exclusion statistics to the spinless boson and
the implications for the calculation of thermodynamics from statistical interactions rather
than from the coupled integral equations of the thermodynamic Bethe ansatz method, the
next question is whether or not the method may be extended to the spinor boson.

Let us for the moment assume in the Bethe ansatz equations of the spinor boson that
all of the spin rapidities are real. Then we may use the integral Bethe ansatz equations
in the low temperature approximation. Following the same method as used by Wu and
Bernard, it may then be shown that the statistical interaction becomes a 2 × 2 matrix,
where we have

gµν(k, k′) = δµνδ(k, k′) +
1
2π

Ωµν(k, k′)

Ωµν(k, k′) = − 2c
c2 + (k − k′)2

if µ = ν

=
c

c2/4 + (k − k′)2
if µ 6= ν (4.12)

Index 0 refers to charge particles, while index 1 refers to spin particles. Thus, the
statistical interaction for charge particles is identical to previously, but there also exists a
further statistical interaction between charge and spin particles, as well as between spin
particles. Note that the the corresponding (G0

i − 1)/L present for charge particles is zero
for the spin equation.

Hatsugai et al. [30] have published an excellent paper in which they comprehensively
generically derive this form of the statistical interaction for all Bethe ansatz solvable
models. Furthermore, they continued to derive the TBA equations for any generic Bethe
ansatz model. However, they do acknowledge that the introduction of multiple levels
to the Bethe ansatz equation will inevitably lead to complex rapidities of some form.
They postulate that the creation of complex spin rapidities involves significantly more
energy than the creation of real spin rapidities, and thus that the equations that they
have generically derived are good approximations at low temperature, and are correct
at T = 0. The rest of the paper deals with specific models in which the energy and
thermodynamics are calculated using this approach, and compared to results obtained by
other means. All of the models presented corroborate the validity of this approximation.

It is of theoretical interest to find a statistical interaction for the spinor boson, which
would allow all interactions to be thought of as purely statistical ones, with no inter-
particle interactions. Should a statistical interaction be found, hopefully one could derive
thermodynamic properties from a statistical approach, using at the very least a regime
in which statistical interactions are approximately constant and may be analysed using
methods from the papers presented in Section 2 above. Although it is evident that the
method used by Wu and Bernard will not cope with the introduction of complex rapidities,
it may be possible to reformulate the approach using a statistical interaction that forms
an N × N matrix which is increased to very large N to account for strings of length N .
We discuss this approach in Chapter 7.
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4.5 Summary

In this chapter, we introduced the idea of fractional exclusion statistics, in which particles
do not obey Bose-Einstein of Fermi-Dirac statistics, but rather, somewhere in-between.
A particular form of fractional exclusion statistics known as Haldane exclusion statistics
occurs when the addition or removal of a particle of one species affects the number of
states left for particles of all other species in a linear manner, with the coefficients for this
relation known as the statistical interaction. Non-mutual statistics occur when particles
of a species only affect particles of that same species. In the case of non-mutual statistics,
thermodynamic information can be derived for the system at low temperature. It has
been shown that the spinless Bose gas obeys Haldane exclusion statistics, and thus the
question of whether the spinor Bose gas also obeys Haldane exclusion statistics has been
raised.

In Chapter 6 we take the approach suggested by Hatsugai et al., and use the TBA in
the low temperature approximation to derive thermodynamical quantities for the spinor
Bose gas. As of yet, there are no other expressions derived from other methods that we
may compare the results to, except for limiting cases. First, however, we derive results for
these limiting cases in Chapter 5.
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Chapter 5

Limiting Regimes

Given the complexity of the continuous Bethe ansatz equations and the thermodynamic
Bethe ansatz, both using the string hypothesis and in the low temperature approximation,
it is not surprising that no general solution has been found. To simplify the problem,
partial solutions have been found in a number of limiting regimes, such as c = 0, c = ∞,
T = 0 and T = ∞.

c = 0 is known as the weak coupling limit, as the interaction between individual
particles becomes increasingly small, until we are left with free bosons with spin. At the
other end of the scale, c = ∞ is known as the strong coupling limit, as the particles
become increasingly repulsive. In the limit, particles will not overlap, and so we have
what are effectively free fermions. Furthermore, the charge and spin components of the
system completely decouple in the strong coupling limit, and so the particles behave as
free spinless fermions, and the results from the spinless Bose gas in the strong coupling
limit apply.

c = ∞ and T = 0 are of most interest to this thesis, and are given a thorough
investigation. We present the analysis from Gu et al. [29] for the strong coupling limit,
and our own derivations of previously known results for the zero temperature regime. We
give a cursory inspection to the other regimes.

5.1 c = 0

While the weak coupling limit corresponds to free bosons for the spinless Bose gas, for
the spinor Bose gas, the spin-spin interactions are at their strongest in this limit, and so
there is not an exact correspondence between the two models. Gu et al. [29] show that
Bose-Einstein Condensation does not occur in this system, but otherwise present little of
importance in this limit.

5.2 c = ∞

At c = ∞, known as the strong coupling limit, spin transportation is frozen, and the charge
component of the system completely decouples from the spin component. Thus, in this
limit, results derived from the charge component will be exactly the same as results for
the spinless Bose gas (in the same limit). With regards to the actual physics, the repulsive
interaction is so strong that particles do not overlap, and so they behave as noninteracting
spinless fermions. Here we present the analysis from Gu et al. [29].

In this limit, the TBA equations simplify greatly, leaving only T ln(κ) = ε(k) = k2 −

37
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Ω− µ. In this simplified form, the integral for the Helmholtz free energy becomes

F = µN − TL

2π

∫ ∞

−∞
ln(1 + e−(k2−Ω−µ)/T ) dk (5.1)

To evaluate the integral, we start by integrating by parts, finding that the boundary term
vanishes by way of L’Hôpital’s rule. Thus

F = µN − L

π

∫ ∞

−∞

k2

1 + e(k2−Ω−µ)/T
dk (5.2)

The next step is to realise that the integral has an even integrand, and write it as twice
the integral from zero to infinity, before making the substitution u = k2/T , to give

F = µN − LT 3/2

π

∫ ∞

0

√
u

1 + eu−(Ω+µ)/T
du (5.3)

This is now in a form in which it may be approximated for low temperature using Som-
merfeld’s Lemma (see Appendix A). We find

F

L
≈ µ

N

L
− T 3/2

π

2
3

((Ω + µ)/T )3/2

[
1 +

3π2

24
1

((Ω + µ)/T )2
+ · · ·

]

= µ
N

L
− 2
π

[
(Ω + µ)3/2

3
+

π2T 2

24(Ω + µ)1/2
+ · · ·

]
(5.4)

To further analyse this, we need to know the chemical potential, and how it varies
with temperature. Noting that limc→∞Kn(k) = 0, we find the following from the integral
Bethe ansatz equations (equation 3.24).

ρ(k)(1 + κ) =
1
2π

ρ(k) =
1

2π(1 + κ)

=
1
2π

1
1 + e(k2−µ−Ω)/T

(5.5)

We may now use the relation D = N/L =
∫
ρ(k) dk to determine the chemical potential,

by performing the integral, and then solving for µ.

D =
1
2π

∫ ∞

−∞

1
1 + e(k2−µ−Ω)/T

dk

=
√
T

2π

∫ ∞

0

u−1/2

1 + eu−(µ+Ω)/T
du (5.6)

The substitution u = k2/T has been made. We apply Sommerfeld’s Lemma once again
(see Appendix A) to give

D ≈
√
T

2π
2
(
µ+ Ω
T

)1/2
[
1− π2

24
T 2

(µ+ Ω)2
+ · · ·

]

=
1
π

(µ+ Ω)1/2

[
1− π2

24
T 2

(µ+ Ω)2
+ · · ·

]
(5.7)
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We curtail this at the first order term, as we are working in a low T regime. Squaring
both sides and using algebraic manipulation then gives

π2D2 = (µ+ Ω)

[
1− π2

24
T 2

(µ+ Ω)2

]2

µ+ Ω =
π2D2[

1− π2

24
T 2

(µ+Ω)2

]2 (5.8)

We find that at T = 0, (µ + Ω)0 = π2D2. Given that we cannot actually solve for µ, we
approximate (for low temperature, in which this expression is valid):

µ+ Ω ≈ π2D2[
1− π2

24
T 2

(µ+Ω)02

]2
≈ π2D2

[
1 +

T 2

12π2D4
+ . . .

]
(5.9)

We now have a temperature dependent chemical potential.
Combining this equation with our expression for the free energy, we arrive at the free

energy of the system as a function of temperature, to order T 2

F

L
≈ π2D3

[
1 +

T 2

12π2D4

]
− ΩD − 2

π

(π2D2
[
1 + T 2

12π2D4

]
)3/2

3
+

π2T 2

24(π2D2)1/2


=
π2D3

3
− ΩD − T 2

12D
+O(T 4) (5.10)

Following conventional thermodynamics, (see equation 3.56) we have

S

L
=
Cv

L
=

T

6D
+O(T 3) (5.11)

which is Fermi-liquid like. As required, this is the same as the result for the spinless Bose
gas for c = ∞.

It is difficult to obtain corrections of order 1/c for a strong coupling case, as the isospin
and charge do not completely decouple. However, for the spinless case, Batchelor et al.
[35] have derived a 1/c correction to the heat capacity:

Cv

L
=

T

6D

(
1 +

4D
c

)
+O(T 3) (5.12)

If the heat capacity for the spinor Bose gas is found, it should be equivalent to this result
in the limit M/N → 0. This topic will be discussed in more detail in Chapter 6.

5.3 T = 0

In the T = 0 regime, the TBA equations change dramatically. In particular, the first TBA
equation becomes

ε−(k) = k2 − Ω− µ+K2(k) ∗ ε−(k) +
∑
n

Kn(k) ∗ ξ−n (k) for − kf < k < kf (5.13)
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and the free energy (which is here equivalent to the internal energy) becomes

F = µN − L

2π

∫ kf

−kf

ε(k) dk (5.14)

We call kf the Fermi surface, as there are no particles above this momentum value. Note
that ε− and ξ−n are always non-positive, as any positive value is lost when setting T = 0.
The whole integral doesn’t vanish because of the T ln(1 + e−ε(k)/T ) integrand, which must
be carefully treated for negative ε and ξ−n .

As there will be no holes beneath the Fermi surface, κ(k) = ρh/ρ = 0 for −kf < k < kf .
This means that for no external field, ln(ηn) = ∞ ∀ n, and so there are no spin roots in the
system, and thus no spin-↓ particles. This means that the ground state is ferromagnetic.

If we start applying an external field (using Ω 6= 0), we find that the ground state may
occur for different magnetisations (which corresponds to different M/N). We note that
the low temperature approximation is valid here, and assume that all spin rapdities are
real. However, instead of using the TBA equations to treat this, we use the integral BAE
(equations 3.24).

We now present the results for the spinless Bose gas, followed by the spinor Bose gas
with M = 1 and M/N = 1

2 .

5.3.1 M = 0

This corresponds to the ground state of the spinless Bose gas, which was initially presented
and thoroughly explored by Lieb and Liniger [6]. This is a ferromagnetic state, as all
particles are in the spin-↑ state. It also happens to be the ground state of the system, as
seen above. We present only a basic treatment here.

The integral BAE for this system simplifies to

(ρ+ ρh)(k) =
1
2π

+K2(k) ∗ ρ(k) (5.15)

Given that the kinetic energy of the system has the form Ek/L =
∫∞
−∞ k2ρ(k) dk, we expect

that ρ will be nonzero only for −kf ≤ k ≤ kf , where kf is the Fermi surface. Below this
Fermi surface, there will be no holes, as if there were any, there would be excess energy in
the system, and so we wouldn’t actually have T = 0. Thus we can rewrite our equation as

ρ(k) =
1
2π

+
1
2π

∫ kf

−kf

2c
c2 + (k − k′)2

ρ(k′) dk′ (5.16)

This is an inhomogeneous Fredholm integral equation of the second kind. While an exact
solution may be written as the limit of an infinite sum (the Neumann series solution), we
may rapidly obtain approximations for c� 1 and c� 1.

Limit: c� 1

We start by Taylor expanding K2(k−k′) for small k′, which is valid because we only have
a small range of integration, compared to c, which may be quite large. This gives

ρ(k) =
1
2π

+
∫ kf

−kf

(
c

π

1
c2 + k2

+
2ckk′

π(c2 + k2)2
+ . . .

)
ρ(k′) dk′ (5.17)
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The first term integrates to give the particle density of the system. The second term
integrates to a constant multiplying the total momentum of the system, which we may
take to be zero. Subsequent terms are O(c−3), and are thus ignored.

This means that the density of particles within the system is almost constant for large
c, with

ρ(k) =
1
2π

+
c

π

1
c2 + k2

N

L

≈ 1
2π

+
1
πc

N

L
(5.18)

Note that we have used k � c in this approximation. From integrating ρ from −kf to kf ,
we may approximately obtain the Fermi surface for this regime.

kf =
πD

1 + 2D
c

≈ πD(1− 2D
c

) (5.19)

As c → ∞, kf = πD is obtained, which corresponds to the Fermi surface derived above
for the c = ∞ regime, as required.

Limit: c� 1

In this limit, we cannot similarly expand K2(k − k′) for small c. Doing so results in∫ kf

−kf
1/(k − k′)2 dk′, which is indeterminate, as −kf ≤ k ≤ kf . An approximate solution

is obtained using the so-called “semicircle approximation”, details of which are available
in Refs. [36, 37].

ρ(k) =
1

2πc

(
k2

f − k2
)1/2

kf = 2
√
cN/L (5.20)

Evidently, for c = 0, the density function diverges, as all particles condense into the ground
state, as expected for free bosons.

Figure 5.1 plots these density functions for a variety of c. Note that the red curves for
both regimes are for c outside the valid range of the approximations, but give an indication
that curves in this region will be some combination of these two.

5.3.2 M = 1

It is possible to derive a semi-continuous form of the Bethe ansatz equations, stipulating
that the pseudomomenta become continuous, whilst keeping only one spin rapidity, and
thus having a discrete variable remain. Whilst M = 1 is better dealt with by assuming
it is distributed out in a continuum and undertaking calculations in this manner, it is
theoretically instructive to observe what happens when the value of a single spin rapidity
is fixed.



42 Limiting Regimes

Figure 5.1: Density ρ(k) for varying c at T = 0. D = 0.5 for all curves. The strongly curved plots

are the semicircle approximation, while the plots with sharp edges are of the strong coupling regime. For

the semicircle approximation, c = 1/2 (Red), 1/4 (Green), 1/6 (Blue), 1/10 (Magenta). For the strong

coupling regime, c = 2 (Red), 5 (Green), 15 (Blue), 40 (Magenta).

Letting our spin rapidity be called λ, the Bethe ansatz equations then become

(ρ+ ρh)(k) =
1
2π

+K2(k) ∗ ρ(k)−
1

2πL
d
dk

(Θ−1/2(k − λ))

=
1
2π

+K2(k) ∗ ρ(k)−
c

2πL
1

[c2/4 + (k − λ)2]
(5.21)

Using this version of the BAE, we can derive density functions for large c in exactly
the same manner as above, dropping terms of order c−2 as necessary. This new density
function is

ρ(k) =
1
2π

+
c

π

1
c2 + k2

N

L
− c

2πL
1

[c2/4 + (k − λ)2]
for c� 1

kf =
πD

1 + 2D
c − 4

Lc

≈ πD(1− 2D
c

+
4
Lc

) (5.22)

Figure 5.2 illustrates the difference between M = 0 and M = 1. From the plots, it
is evident that a single spin rapidity repels charge roots away from itself, widening the
Fermi surface, and thus raising the energy. Note that in the figure, extreme values were
chosen to make the effect pronounced. This effect is not limited to the strong coupling
case, as Li et al. [38] have shown through numerical simulations, and discuss in detail for
the c = ∞ regime. For more spin rapidities, this effect is compounded. This reinforces
that the ground state will be one with no spin rapidities, i.e., where all particles are in
same spin state.
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Figure 5.2: Density functions for the strong coupling regime for M=0 (Blue) and M=1 (Red). The

values c = 5, D = 0.8, L = 4, λ = 0.4 have been used.

5.3.3 Derivations using arbitrary M

We resort to the integral BAE for both charge and spin to solve for arbitrary M . As
above, we assume that there are no holes beneath the Fermi surface for the charge, and
so we restrict the integrals over charge density to ±kf , and set ρh to zero for this region.
However, because the energy of the system is not directly related to the spin density, there
is no Fermi surface, and the hole density is not necessarily zero. Except for the special
case of M = N/2, the system is difficult to solve, requiring the use of the Wiener-Hopf
method, which is beyond the scope of this thesis.

Recalling from above that only the negative part of ξ contributes to the system at
T = 0, we note that for a sufficiently strong external field, all of ξ is negative, and so the
distribution of spin roots will be spread out over the whole of λ-space. Furthermore, if
we assume that all spin vacancies are occupied by spinon pseudoparticles, i.e., σh = 0, we
find that this situation corresponds to a system with M = N/2.

Limit: M = N/2

We work in the strong coupling regime, and discard all terms of O(c−2) and higher. Thus,
for integrals that contain terms of order 1/c, we use ρ(k) = 1/2π. The previous results from
the strong coupling regime for M = 0 then apply. The integral Bethe ansatz equations
now read

ρ(k) =
1
2π

+
c

π

1
c2 + k2

N

L
− 1

2π

∫ ∞

−∞

c

c2/4 + (k − λ′)2
σ(λ′) dλ′ (5.23)

σ(λ) =
c

2π
1

c2/4 + k2

N

L
− 1

2π

∫ ∞

−∞

2c
c2 + (λ− λ′)2

σ(λ′) dλ′ (5.24)

We now look at solving the integral equation for σ(λ), as it is now decoupled. First,
we take the Fourier transform of the integral equation. Given that the integral term is a
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convolution, the transform is relatively simple to take, with result

σ̂(w) =
N

L
e−c|w|/2 − ˆσ(w) e−c|w|

From here, it is possible to solve for σ̂(w) = N sech(cw/2)/2L. Through the use of residue
theory, the inverse Fourier transform may be applied. We find

σ(λ) =
N

L

1
2c

sech
(
πλ

c

)
The ratio M/L may now be discovered for λB = ∞ by integrating σ over all λ, with

M

L
=

∫ ∞

−∞
σ(λ) dλ

=
N

L

1
2c

∫ ∞

−∞
sech

(
πλ

c

)
dλ

=
N

2πL

∫ ∞

−∞
sech(λ) dλ

=
N

2L
(5.25)

Thus, this regime corresponds to half of the particles with spin-↑ and half of the particles
with spin-↓, as required.

The charge density may now be calculated. First

ρ(k) =
1
2π

+
c

π

1
c2 + k2

N

L
− N

4πLc

∫ ∞

−∞

c

c2/4 + (k − λ′)2
sech

(
πλ′

c

)
dλ′ (5.26)

We Taylor expand the integrand for small k. The second order term is an odd function,
and thus integrates to zero, and higher order terms are O(c−5), and thus can be ignored.
We have

ρ(k) =
1
2π

+
c

π

1
c2 + k2

N

L
− N

4πLc

∫ ∞

−∞

c

c2/4 + λ′2
sech

(
πλ′

c

)
dλ′

=
1
2π

+
c

π

1
c2 + k2

N

L
− N

4πcL

∫ ∞

−∞

sech(πλ′)
1/4 + λ′2

dλ′

=
1
2π

+
c

π

1
c2 + k2

N

L
− N

L

ln(2)
πc

=
1
2π

+
1
πc

N

L
− N

L

ln(2)
πc

(5.27)

The integral here has been obtained from a comprehensive table of integrals [39, equation
3.522.3], and we have discarded terms of O(c−2).

5.3.4 The Fermionisation of Bosons

We note that in the strong coupling regime, the charge density at zero temperature is
dominated by the Fermi surface, which is effectively a step function (see Figure 5.1).
It is curious that the particles that we are using, bosons, are displaying a fermion-like
structure. This can be attributed to a phenomenon known as the “Fermionisation of
Bosons”. Because our particles are interacting, Bose-Einstein statistics do not apply. As
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the interaction is turned off by c → 0, the familiar Bose-Einstein statistics re-emerge.
As the interaction is made stronger, c → ∞, the particles behave precisely as fermions,
although the wavefunction symmetry is that of bosons. This effect may be explained by
considering that the dynamical inter-particle interaction may transmute into a statistical
interaction, which becomes Fermi-like in the strong coupling regime. In this manner, the
repulsive bosons acquire Fermi-Dirac statistics. Recall that a qualitative illustration of
fermionisation was presented in Figure 1.2.

It is important to note that in the strong coupling regime, this Fermi surface structure
will dominate low temperature behaviour.

5.3.5 Energies at T = 0

Having obtained the charge density for M = 0 and M = N/2, it is now possible to
work out the internal energy per unit length for these limits. We simply integrate
E/L =

∫ kf

−kf
k2ρ(k) dk for the charge density in each of the regimes, which is approxi-

mately constant. The Fermi surface for each case is easily calculated, as ρ is constant to
O(c−1), with

kf =
N/L

2ρ
(5.28)

The energy of each system is simply dependent upon the density, such that

E/L =
∫ kf

−kf

k2ρdk

=
2ρ
3

[
k3
]kf

0

=
(N/L)3

12
1
ρ2

(5.29)

Thus we have

E/L =
(N/L)3

3
π2[

1 + 2
c

N
L

]2 for M = 0

E/L =
(N/L)3

3
π2[

1 + 2
c

N
L (1− ln(2))

]2 for M = N/2 (5.30)

Evidently, M = 0 has a lower energy than M = N/2, and it is a reasonable assumption
that intermediate values of M/N interpolate between these two limits in some way. We
plot these curves for varying c in Figure 5.3.

To order O(c−1), these equations are

E/L =
π2(N/L)3

3
− 4π2(N/L)4

3c
for M = 0

E/L =
π2(N/L)3

3
− 4π2(N/L)4

3c
(1− ln(2)) for M =

N

2
(5.31)
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Figure 5.3: Ground state energy for M = 0 and M/N = 1/2 as a function of c. The solid curve has

M/N = 1/2, while the dotted curve has M/N = 0.

5.4 T = ∞

The regime in which T → ∞ results in free particles and isospins. Gu et al. [29] discuss
this regime in a small amount of detail, and Takahashi [19, Chapter 12] discusses this limit
briefly.

For high T , all ηn(λ) become independent of λ. The function
∫

ln(1+e−ε(k)/T )) dk can
then be expanded with respect to the fugacity e−µ/T to yield the free energy. The free
energy at high temperature can also be obtained from fractional exclusion statistics [40].

The most important result in this regime is that the system becomes paramagnetic,
with a zero magnetisation.

5.5 Summary

This chapter has dealt primarily with limiting regimes of the model that simplify the TBA
equations. The benefit of doing so is twofold; firstly, the model is much simpler to solve in
such limits, and secondly, the behaviour of the model in these limits is indicative of how
the model will behave in neighbouring regimes.

In the strong coupling limit, the charge and spin components of the system decouple,
and so the system is effectively a spinless Bose gas, for which thermodynamical properties
were found. In the zero temperature regime, we derived the distribution of charge roots
for strong and weak coupling with no spin-↓ particles, and showed the effect of a single
spin-↓ particle on the distributions in the strong coupling limit. We also derived the
distribution of charge roots for strong coupling with M = N/2, and calculated the ground
state energy for strong coupling with M = 0 and M = N/2.

In the next chapter, we present a new approximation to the TBA equations in the
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strong coupling limit for low temperatures. In Chapter 7, we take the analysis of the zero
temperature limit with M = N/2, and apply fractional exclusion statistics to obtain low
temperature behaviour of the system.
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Chapter 6

A New Approximation

In the previous chapter, it was seen that the integral equations associated with limiting
cases of this model are relatively troublesome, with various approximations required to
obtain any useful information. It is no surprise that there are no analytical solutions to
the thermodynamic Bethe ansatz equations, although a number of attempts have been
made to undertake the formidable task of numerically solving the integral equations for
certain maximum string lengths. See for example Refs. [41, 42].

In this chapter, we propose a solution to the thermodynamic Bethe ansatz equations
in the low temperature approximation (real spin rapidities), as postulated by Hatsugai et
al. [30]. We work in the strong coupling regime, where c→∞, as this is a simpler regime
than c→ 0, because at c = ∞, the spin components completely decouple from the charge
components, as seen in the previous chapter. Furthermore, we already have an analytical
expression (equation 5.10) for the free energy at low temperature for the spinless Bose gas
in the strong coupling limit, to which we aim to add a 1/c correction.

6.1 Low T , Strong Coupling Regime

We start with the TBA equations in the low temperature approximation, which are re-
produced here for convenience. We have discarded Ω, the Rabi frequency, to simplify the
derivation. Our starting point is thus

T ln(κ) = ε(k) = k2 − µ− TK2(k) ∗ ln(1 + κ−1)− TK1(k) ∗ ln(1 + η−1) (6.1)

ln(η) = K1(λ) ∗ ln(1 + κ−1) +K2(λ) ∗ ln(1 + η−1) (6.2)

Working in the strong coupling regime, c→∞, we drop all terms that are O(c−2) and
higher. We start by approximating K2(k) ∗ ln(1 + κ−1), by Taylor expanding K2(k − k′)
for small k′. Although k′ isn’t necessarily small, for large k′, the entire function becomes
O(c−2), and so we are satisfied that this approximation is valid for the area of interest.
Now

K2(k) ∗ ln(1 + κ−1) =
1
π

∫ ∞

−∞

c

c2 + (k − k′)2
ln(1 + e−ε(k′)) dk′

≈ 1
π

∫ ∞

−∞

(
c

c2 + k2
+

2ckk′

(c2 + k2)2
+ . . .

)
ln(1 + e−ε(k′)) dk′

≈ 1
π

∫ ∞

−∞

c

c2 + k2
ln(1 + e−ε(k′)) dk′

=
2c

c2 + k2

µN − F

TL
(6.3)

49
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We note that the second order term of the Taylor expansion is O(c−3). The remaining
integral is then substituted from equation 3.54, where F is the Helmholtz free energy. We
define J = µN−F

TL for brevity. K1(λ) ∗ ln(1 + κ−1) may be similarly treated, arriving at

K1(λ) ∗ ln(1 + κ−1) ≈ c

c2/4 + λ2
J (6.4)

Making the substitution τ = ln(η), the second of our TBA equations then becomes

τ(λ) =
c

c2/4 + λ2
J +

c

π(c2 + λ2)
∗ ln(1 + e−τ(λ))

=
c

c2/4 + λ2
J +

∫ ∞

−∞

c

π(c2 + λ′2)
ln(1 + e−τ(λ−λ′)) dλ′ (6.5)

Note that while ln(η) = ξ/T , including temperature would only mean writing another
constant in the equations. Thus, we use τ = ξ/T instead.

6.2 Solving the TBA Equations

We solve this integral equation by iteration.

τ0 =
c

c2/4 + λ2
J

τ1 =
c

c2/4 + λ2
J +

∫ ∞

−∞

c

π(c2 + λ′2)
ln(1 + e−τ0(λ−λ′)) dλ′

=
c

c2/4 + λ2
J +

∫ ∞

−∞

c

π(c2 + λ′2)
ln(1 + e

− cJ
c2/4+(λ−λ′)2 ) dλ′ (6.6)

Keeping in mind that
∫∞
−∞

c
π(c2+λ′2)

dλ′ = 1, we note that for most of the time, the integral
term is very close to ln(2). Figure 6.1 plots the difference between the actual integrand
and the integrand using ln(2) instead of the above formula. As c → ∞, the integrand
converges to c

π(c2+λ′2)
ln(2).

Thus, we write

ln(1 + e−τ(λ−λ′)) = ln(2)− ln(2) + ln(1 + e−τ(λ−λ′))

= ln(2) + ln(1/2 + e−τ(λ−λ′)/2) (6.7)

where ln(2) is much bigger than the second term. We may thus write

τ1 =
c

c2/4 + λ2
J + ln(2) +

∫ ∞

−∞

c

π(c2 + λ′2)
ln(1/2 + e

− cJ
c2/4+(λ−λ′)2 /2) dλ′ (6.8)

For the time being, let us ignore the final term, and look at how the ln(2) term evolves
under iteration. In fact, lets call it ln(x) for the moment, and find a relation for x which
makes this term invariant when iterating.

τ1 =
c

c2/4 + λ2
J + ln(x)

τ2 =
c

c2/4 + λ2
J +

∫ ∞

−∞

c

π(c2 + λ′2)
ln(1 + e−τ1(λ−λ′)) dλ′

=
c

c2/4 + λ2
J +

∫ ∞

−∞

c

π(c2 + λ′2)
ln(1 + e

− c
c2/4+(λ−λ′)2

J−ln(x)
) dλ′
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Figure 6.1: An approximation for the integrand for equation 6.6, with c = 100, J = 2, λ = 50. The

blue line is the correct integrand, the red line is the integrand with a logarithm component of ln(2), and

the green line is the difference of the two.

=
c

c2/4 + λ2
J +

∫ ∞

−∞

c

π(c2 + λ′2)
ln(1 + e

− c
c2/4+(λ−λ′)2

J
/x) dλ′

=
c

c2/4 + λ2
J + ln(1 + 1/x) +

∫ ∞

−∞

c

π(c2 + λ′2)
ln

1 + e
− c

c2/4+(λ−λ′)2
J
/x

1 + 1/x

 dλ′

(6.9)

Thus, we have the condition ln(x) = ln(1 + 1/x), or x = 1 + 1/x, which is the defining
relation for the golden ration, φ. There are two solutions to this equation, one positive,
one negative. As we are taking the logarithm of this value, we need the positive one.
φ = 1+

√
5

2 ≈ 1.618 . . .. It is curious to note that no other paper we found mentions the
golden ratio. We may thus write our function in the form

τ2 =
c

c2/4 + λ2
J + ln(φ) +

∫ ∞

−∞

c

π(c2 + λ′2)
ln

φ+ e
− c

c2/4+(λ−λ′)2
J

φ+ 1

 dλ′ (6.10)

We now seek to solve the integral. From the form, it is unlikely that an analytical
solution exists. However, we note that if we plot the integrand, the curve looks rather
similar to a gaussian for small λ. For larger λ, we may still fit a gaussian to the curve, but
the error in the fit increases substantially, before decreasing as 1/c. As this error is much
less than the constant component of η, it is small enough to ignore in this approximation.
See Figure 6.2.

We construct the gaussian by centring it at λ = λ′, where the logarithm achieves its
maximum value. This is not always the maximum of the curve for large λ, but it is a good
estimate. We adjust the height of the gaussian to the height of the curve at that point.
Finally, we guess at the width of the gaussian, writing it in terms of c. It appears that
there should be no J dependence for this width. A more rigourous method of obtaining
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Figure 6.2: Comparison of the function and approximation in equation 6.11. Full lines represent the

function, symbols represent the equation. We use c = 100, J = 2 for all curves. λ = 0 (Red), 100 (Blue),

200 (Magenta), and 300 (Black).

the width would be to apply curve fitting methods. We thus arrive at the approximation

c

π(c2 + λ′2)
ln

φ+ e
− cJ

c2/4+(λ−λ′)2

φ+ 1

 ≈ c

π(c2 + λ2)
ln

(
φ+ e

−4J
c

φ+ 1

)
e−

4(λ−λ′)2

c2 (6.11)

In this approximation, we may integrate the function, arriving at

τ2 =
c

c2/4 + λ2
J + ln(φ) +

c2

2
√
π(c2 + λ2)

ln

(
φ+ e

−4J
c

φ+ 1

)
(6.12)

While certainly elegant, this last term is also rather bulky, and may be Taylor expanded
in terms of large c. It is interesting to note that this term has no λ dependence until the
c−3 term. Keeping only the first order term, we have

τ2 =
c

c2/4 + λ2
J + ln(φ)− 2J

c
√
πφ2

=
c

c2/4 + λ2
J + ln(φ e−

2J
c
√

πφ2 ) (6.13)

We note that our constant is now not quite the golden ratio, but a slightly changed
version. Assuming our constant is now ln(A), we find that our equilibrium condition is
now:

ln(A) = ln(1 +
1
A

)− 2J
c
√
π(1 +A)

(6.14)

This is a transcendental equation for A. We approximate the solution by exponentiating
both sides, before Taylor expanding to O(c−1) and solving for A. We then Taylor expand
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again, finding the 1/c correction to ln(φ). In this way we find

A ≈
1 +

√
5− 8J

c
√

π

2

≈ φ− 2J√
5πc

ln(A) = ln
(
φ− 2J√

5πc

)
≈ ln(φ)− 2J√

5πcφ
(6.15)

Thus, to order 1/c, we find that

ln(η) =
c

c2/4 + λ2
J + ln(φ)− 2J√

5πcφ
(6.16)

Having obtained η, we now seek to solve for ε(k) via

ε(k) = k2 − µ− T
2cJ

c2 + k2
− TK1(k) ∗ ln(1 + η−1) (6.17)

The final term can be easily found by following steps similar to the above derivation. We
use ln(A) instead of it’s value, as the integral is slightly different. Now

K1(k) ∗ ln(1 + η−1) =
∫ ∞

−∞

c

2π(c2/4 + λ′2)
ln(1 + e−τ(λ−λ′)) dλ′

= ln(1 +
1
A

)− 4J
c
√
π(1 +A)

= 2 ln(A)− ln(1 +
1
A

)

= ln

(
A3

1 +A

)

≈ ln(φ)− J

c
√

5πφ
(6− 2

φ
) (6.18)

We have used the approximate value for A from above, and Taylor expanded for small
1/c. We then have the result

ε(k) = k2 − µ− 2cJT
c2 + k2

− T ln(φ) +
JT

c
√

5πφ
(6− 2

φ
) (6.19)

6.3 Calculating the Free Energy

We may now calculate the free energy per unit length, using equation 3.54. We start by
integrating by parts, where the boundary terms vanish by way of L’Hôpital’s rule.

F/L = µN/L− T

2π

∫ ∞

−∞
ln(1 + e−ε(k)/T ) dk

= µN/L− 1
2π

∫ ∞

−∞

k

1 + eε(k)/T

∂ε(k)
∂k

dk
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= µN/L− 1
2π

∫ ∞

−∞

k

1 + eε(k)/T

(
2k +

4kcJT
(c2 + k2)2

)
dk (6.20)

The second term in the brackets is O(c−3), compared to the first term which is O(1), and
so we drop the second term. Thus

F/L = µN/L− 1
π

∫ ∞

−∞

k2

1 + eε(k)/T
dk (6.21)

Next, we note that ε(k) is an even function in k, as is the rest of the integrand, and so we
change the limits of integration to 0 . . .∞, and multiply by two. This allows us to make
the substitution u = k2/T , with result

F/L = µN/L− 2
π

∫ ∞

0

k2

1 + eε(k)/T
dk

= µN/L− 1
π

∫ ∞

0

u1/2T 3/2

1 + eε(u)/T
du

= µN/L− 1
π

∫ ∞

0

u1/2T 3/2

1 + eu−µ/T− 2cJ
c2+Tu

−ln(φ)+ J

c
√

5πφ
(6− 2

φ
)
du (6.22)

In the exponent, u clearly dominates 2cJ
c2+Tu

, and so we Taylor expand this second term
for large c, before grouping the terms together. Now

F/L = µN/L− T 3/2

π

∫ ∞

0

u1/2

1 + e
u−
[
µ/T+2J/c+ln(φ)− J

c
√

5πφ
(6− 2

φ
)

] du

= µN/L− T 3/2

π

∫ ∞

0

u1/2

1 + eu−B
du (6.23)

We have substituted B = µ/T + 2J/c + ln(φ) − J
c
√

5πφ
(6 − 2

φ). This is the form required
for Sommerfeld’s lemma (see Appendix A), where B is large, as this holds only for low
temperature. Applying Sommerfeld’s lemma, we arrive at

F/L ≈ µN/L− 2
3π

(TB)3/2

(
1 +

π2

8
T 2

(TB)2
+ . . .

)

= µN/L− 2
3π

(TB)3/2 − π

12
T 2

(TB)1/2
+ . . . (6.24)

We have TB = µ+2JT/c+T ln(φ)− JT
c
√

5πφ
(6− 2

φ). Since all other terms have factors
of T or 1/c, µ is the biggest term here. Now take µ out as a factor, before using the
binomial expansion to first order to obtain (TB)x, with result

TB = µ

[
1 +

2JT
µc

+
T ln(φ)
µ

− JT

µc
√

5πφ
(6− 2

φ
)

]

(TB)3/2 ≈ µ3/2

[
1 +

3
2

2JT
µc

+
3
2
T ln(φ)
µ

− 3
2

JT

µc
√

5πφ
(6− 2

φ
)

]

=

[
µ3/2 +

3JTµ1/2

c
+

3T ln(φ)µ1/2

2
− 3JTµ1/2

c
√

5πφ
(3− 1

φ
)

]
(6.25)
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(TB)−1/2 ≈ µ−1/2

[
1− JT

µc
− T ln(φ)

2µ
+

JT

µc
√

5πφ
(3− 1

φ
)

]

=

[
µ−1/2 − JTµ−3/2

c
− T ln(φ)µ−3/2

2
+
JTµ−3/2

c
√

5πφ
(3− 1

φ
)

]
(6.26)

Combining all of this together gives

F/L ≈ µN/L− 2
3π

[
µ3/2 +

3T ln(φ)µ1/2

2
+

3JTµ1/2

c

(
1− 1√

5πφ
(3− 1

φ
)

)]

− πT 2

12

[
µ−1/2 − T ln(φ)µ−3/2

2
− JTµ−3/2

c

(
1− 1√

5πφ
(3− 1

φ
)

)]
(6.27)

Now, recall that J = µN−F
TL , and so we now need to solve for F/L. For brevity, let us

denote
(
1− 1√

5πφ
(3− 1

φ)
)

by χ ≈ 0.629.

F/L ≈ µN/L− 2
3π

[
µ3/2 +

3T ln(φ)µ1/2

2
+
µN − F

L

3µ1/2

c
χ

]

− πT 2

12
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2
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L
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c
χ

]
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2
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L
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χ

]
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F

L
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χ
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[
µ−1/2 − T ln(φ)µ−3/2

2
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L

µ−3/2

c
χ

]
− F

L

πT 2µ−3/2

12c
χ

F

L

(
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12c
χ

)
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π
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)
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(
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χ + . . .
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(
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χ (6.28)
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This is the most significant result of this approximation. From here, all of the further
results are derived.

At T = 0, the free energy simplifies to

F/L = µN/L− 2µ3/2

3π
− 4µ2

3π2c
χ (6.29)

We now need the chemical potential at zero temperature. Let us start with a trial
value of µ = π2D2(1 + α/c). We know that the energy for zero temperature is of the
form E/L = π2D2/3− 4π2D4/3c× (1− x), and so we check that this trial value works by
equating this with the derived value for F/L, using the binomial expansion and dropping
all terms in c−2. Explicitly

π2D3

3
− 4π2D4

3c
(1− x) = µD − 2µ3/2

3π
− 4µ2

3π2c
χ

= π2D3(1 + α/c)− 2
3
π2D3(1 + α/c)3/2

− 4π2D4

3c
χ(1 + α/c)2

≈ π2D3(1 + α/c)− 2
3
π2D3(1 +

3α
2c

)

− 4π2D4

3c
χ(1 + 2α/c)

≈ π2D3

3
− 4π2D4

3c
χ (6.30)

Thus, this trial value satisfies the form of the energy required. However, this gave no
insight into the value of α. As we are unable to calculate the Fermi surface in this regime
(as the charge and spin components have not completely decoupled, the integral equations
are difficult to solve), we turn to the thermodynamic formula ∂F

∂N = µ. Note that we must
treat µ as a function of particle number. The result

∂F

∂N
= µ+N

∂µ

∂N
− Lµ1/2

π

∂µ

∂N
− 8Lµ

3π2c
χ
∂µ

∂N
(6.31)

implies that

∂µ

∂N

(
N − Lµ1/2

π
− 8Lµ

3π2c
χ

)
= 0 (6.32)

As the trial form of µ is a function of N , then ∂µ/∂N 6= 0, and so

N − Lµ1/2

π
− 8Lµ

3π2c
χ = 0 (6.33)

We insert the trial value for µ, drop all terms in c−2, and solve for α to find

N −N(1 + α/c)1/2 − 8ND
3c

χ = 0

1− (1 +
α

2c
)− 8D

3c
χ = 0

α = −16D
3
χ (6.34)
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We then have the chemical potential at T = 0:

µ = π2D2
(

1− 16Dχ
3c

)
(6.35)

Unfortunately, the method previously used to calculate the chemical potential (Section
5.2) can’t be applied, as the density function is no longer as trivial as in the strong coupling
limit. However, as there is no simple way to obtain the temperature dependence of µ, we
approximate that the previously derived temperature dependence is the same. This is a
reasonable approximation, as it will give the correct result in the limiting cases of T = 0
and c = ∞. Furthermore, the correction to the chemical potential is of order 1/c, which
is small regardless. The correct way to calculate the chemical potential is to solve for the
charge density, and integrate it over all k to obtain the particle density, then solve for µ.
However, the solution to the coupled integral equations required to solve for the charge
density is beyond the scope of this thesis.

The approximation that we will use for the chemical potential is (cf equation 5.9)

µ =
µ0[

1− π2

24
T 2

µ0
2

]2
≈ µ0

[
1 +

π2

24
T 2

µ0
2

+ . . .

]

≈ π2D2
(

1− 16Dχ
3c

)[
1 +

1
24

T 2

π2D4

(
1 +

32Dχ
3c

)]
(6.36)

We do not present the full expression for the free energy as a function of temperature,
as inserting the chemical potential does not elucidate anything. The heat capacity of the
system, calculated using eqns 3.56, may be expanded to order T 2 and c−1. We arrive at
the result

Cv

L
≈ T

6D

(
1 +

4Dχ
c

)
+
T 2 ln(φ)
π2D2

(
1

8D
+

3χ
2c

)
(6.37)

6.4 Comparisons to Other Regimes

6.4.1 c = ∞

In the strong coupling limit, using µ = π2D2
[
1 + T 2

12π2D4

]
, we have the free energy

F

L
=

π2D3

3
− T 2

12D
− TD ln(φ)

[
1 +

T 2

24π2D4

]
(6.38)

We now compare this to equation 5.10, and note that we have obtained an extra ln(φ)
term.
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6.4.2 T = 0

At T = 0, the ground state is ferromagnetic as we have discarded the Rabi frequency term,
and so we should recover equation 5.31 for M = 0. Using the chemical potential derived
above, we find that

F

L
=
π2D3

3
− 4π2D4

3c
χ (6.39)

In this case, unless χ = 1 (which by definition, it isn’t), this equation is different to the
previously calculated value.

6.5 Explaining the Discrepancies

All of the discrepancies that exist between our results and the limiting cases can be seen
to stem from the final term in ε(k), which gives rise to χ and ln(φ). Unable to find errors
in our method, we carried out a careful inspection of the limiting case, c = ∞.

Let us look at the second of the TBA equations in the strong coupling regime, with
no external field, namely

τ(λ) =
c

c2/4 + λ2
J +K2(λ) ∗ ln(1 + e−τ(λ))

=
c

c2/4 + λ2
J +

∫ ∞

−∞

c

π(c2 + λ′2)
ln(1 + e−τ(λ−λ′)) dλ′ (6.40)

Make a change of coordinates x = λ/c, and substitute this in the integral also, giving

τ(λ) =
J

c (1/4 + x2)
+
∫ ∞

−∞

1
π(1 + x′2)

ln(1 + e−τ(x−x′)) dx′ (6.41)

We note that as c→∞, the first term vanishes, but the second is completely independent
of c. Unsurprisingly, the solution to this integral equation is τ(x) = τ(λ) = ln(φ), where φ
is still the golden ratio. Now, we move on to look at the first TBA equation in the strong
coupling regime, which is

ε(k) = k2 − µ− T
2cJ

c2 + k2
− TK1(k) ∗ ln(1 + eτ(k))

= k2 − µ− T
2cJ

c2 + k2
− T

∫ ∞

−∞

c

2π(c2/4 + k′2)
ln(1 + e−τ(k−k′)) dk′ (6.42)

Again, apply a change of coordinates β = k/c, giving

ε(β) = c2β2 − µ− T
2J

c(1 + β2)
− T

∫ ∞

−∞

1
2π(1/4 + β′2)

ln(1 + e−τ(β−β′)) dβ′

= c2β2 − µ− T
2J

c(1 + β2)
− T

∫ ∞

−∞

1
2π(1/4 + β′2)

ln(1 + e− ln(φ)) dβ′

= c2β2 − µ− T
2J

c(1 + β2)
− T ln(φ) (6.43)

Changing back to k = cβ, and taking the limit c→∞, we arrive at

ε(k) = k2 − µ− T ln(φ) (6.44)
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This is contrary to the result from the analysis of Gu et al. [29] which we presented in
the previous chapter. If this new expression for ε(k) is used in the c = ∞ analysis, the
equations that we have derived in this chapter are correct in the strong coupling limit.

The investigation of this discrepancy is beyond the scope of this thesis, but remains a
question of interest.

It is a known feature of the TBA model that the order in which limits are taken is im-
portant, including c→∞, T → 0, and also the thermodynamic limit. Mathematically, it
is well known that uniform convergence is required to interchange the order in which limits
are taken, and so for this model, the limits do not commute. Thus results are dependent
upon the order in which limits are taken. It is believed that any further discrepancies
between limits cases of these equations arise from this phenomena. In particular, we have
made a tacit assumption that cT � 1, and so equations involving the zero temperature
limit are likely to yield different results to what would otherwise be expected. We are thus
satisfied with our results.

6.6 Summary

In this chapter, we have presented our own analysis of the model in the strong coupling
regime at low temperatures. We used the TBA equations in the low temperature approx-
imation, as suggested by Hatsugai et al. [30], and solved them to order 1/c, calculating
the free energy of the system to order T 2. Next, we calculated the chemical potential for
the system at low temperatures, and combined this with the expression for free energy to
obtain the heat capacity at constant volume. The significance of these results is that the
first order correction to the strong coupling limit contains all of the contributions from
spin, and so represents a large step forwards in understanding the strong coupling limit of
the spinor Bose gas.

6.7 Further Work

The desired result from this line of enquiry is to obtain a first order correction in c−1

to the free energy at low temperatures, and from there to calculate M/N as a function
of temperature. This would allow the calculation of the magnetisation ∝ (N − 2M) by
temperature. This is of interest, as the ground state is known to be ferromagnetic, while
at high temperatures, the system is paramagnetic, and relatively little is known of the
intermediate regimes.

To obtain M/N , one would take the functions for ε(k) and η(λ), and substitute them
into the BAE in integral form (equations 3.27), eliminating the hole densities from these
equations. This leaves two coupled integral equations to solve, both involving temperature
dependent terms. Once a solution for ρ(k) and σ(λ) has been obtained, the relations
N/L =

∫
ρ(k) dk and M/L =

∫
σ(λ) dλ may be used to obtain the ratio M/N .

An alternative form of the free energy might also be used by deriving the TBA equa-
tions using a fixed ratio M/N , allowing the calculation of the free energy for a fixed
magnetisation, which may then be minimised with regards to M/N . This should result in
a minimisation condition for M/N , which would theoretically be the same as the result
obtained from above.
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A related problem which arises when dealing with magnetisation is how the magneti-
sation of the system varies with different external fields Ω. Like ferromagnetic systems,
this system will display hysteresis. By considering the BAE and TBA equations at zero
temperature for different external fields, the form of this hysteresis curve could potentially
be derived. While the critical external field strength needed to create a zero magnetisa-
tion is known, the linearised effect of small perturbations to the field about this critical
strength on the magnetisation is unknown.



Chapter 7

Thermodynamics from Fractional

Exclusion Statistics

As mentioned in Chapter 4, since the connection between the spinless Bose gas and Hal-
dane exclusion statistics was identified by Wu and Bernard in 1994 [21], the question of
whether multi-component Bethe ansatz solvable models may also be identified as exclusons
obeying fractional exclusion statistics has been of considerable theoretical interest. In this
chapter, we look at an attempt to construct a statistical interaction for multi-component
Bethe ansatz solvable models, and explain how such efforts have to date proved fruitless.
We also discuss the usefulness of the identification of a statistical interaction. We found
one specific case in which non-mutual statistics may be approximated for the spinor Bose
gas, and present this with the thermodynamics that fractional exclusion statistics yields
for this case.

7.1 Attempts at Incorporating the String Hypothesis

Similar to the method used by Bernard and Wu [21], we can use the integral Bethe ansatz
equations in an attempt to define a statistical interaction gνµ(λ, λ′), with the subscripts
referring to charge particles and different length strings of spin rapidities. This would
imply mutual exclusion statistics between strings of different lengths, as well as particles
and spin rapidity strings. The problem with this approach is that the statistical weight
then becomes impossible to derive, as instead of counting the possibilities for individual
particles, we now have to consider the possibilities for individual strings containing indi-
vidual particles. This becomes an intractable problem when strings of infinite length are
considered.

7.2 The Significance of the Statistical Interaction

Although the discovery of a statistical interaction for the spinor Bose gas involving complex
spin rapidities would be a major achievement should it be derived, but it is unlikely to
be of any practical use. The thermodynamic equations derived from such a statistical
interaction would be completely equivalent to the TBA equations discussed in Chapter 3,
and thus, just as impossible to solve. In this regards, the statistical interaction obeyed
by the spinor Bose is essentially of theoretical interest only. However, if such a statistical
interaction is found to exist, then the spinor Bose gas may be defined as an excluson gas
obeying fractional exclusion statistics, and comparisons to other excluson gases may then
be drawn.
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The exception to this is when non-mutual statistics may be found in particular regimes,
as is presented in the next section. In this case, significant results can be found by knowing
the statistical interaction.

7.3 A Special Case

In the case of the strong coupling regime at zero temperature, a particularly elegant solu-
tion for the spinon root density was found for the case of M/N = 1/2 in Chapter 5 (Section
5.3.3). The resulting charge and spin densities are reproduced here for convenience.

ρ(k) =
1
2π

+
1
πc

N

L
(1− ln(2))

σ(λ) =
N

L

1
2c

sech
(
πλ

c

)
(7.1)

Although the equations were originally coupled, the form in which they are presented
here are decoupled. In this manner, non-mutual statistics now apply, gµν = δµνgµ, indi-
cating that the charge and spin components are (effectively) decoupled. Since the charge
component dictates the energy of the system, we can essentially ignore the statistical
interaction between spinons.

The total number of states in the system is simply N/L =
∫
ρ(k) dk, where the limits

of integration are ±kf , the Fermi surface. As ρ is a constant, we can write this out in full
as

N

L
= 2kf

(
1
2π

+
1
πc

N

L
(1− ln(2))

)
(7.2)

But at the same time, the total number of states can be written as Di = Ni + G0
i −

giiNi − 1, in the same manner as equation 4.7, where we treat all charge particles as
belonging to the same species. Because we have non-mutual statistics, there is no sum
over the statistical interaction with the spinons. We assume that the statistical interaction
is approximately constant. When we equate this expression with the above equation, we
find that

2kf

(
1
2π

+
1
πc

N

L
(1− ln(2))

)
=
G0 − 1
L

+
N

L
(1− g) (7.3)

Now, given that when there are no particles in the system, the charge hole density is
1/2π, we find that (G0 − 1)/L = kf/π. Consequently, we have

2kf

πc

N

L
(1− ln(2)) =

N

L
(1− g) (7.4)

Now kf was calculated in equation 5.28. Solving for g and dropping terms of order c−2,
we obtain

g = 1− 2
c

N

L
(1− ln(2)) (7.5)

In this manner, we have obtained a constant statistical interaction for this particular case.
There is reason to believe that the statistics for low temperature do not differ greatly

from the statistics for zero temperature [30], and so we approximate that the statistical
interaction is constant for low temperatures. We may now apply the results of Isakov et
al. [23], with help from Batchelor and Guan [43], who provide formulae for calculating
energies from the fractional exclusion statistics formulation. We use D = N

L .
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The chemical potential at T = 0 calculated by fractional exclusion statistics is

µ0 = π2D2g2

= π2D2
(

1− 4D
c

(1− ln(2))
)

(7.6)

which is exactly the same as when calculated by µ0 = k2
f . The chemical potential at low

temperatures is then found

µ = µ0

[
1 +

π2T 2

12µ2
0

g

]

= µ0

[
1 +

π2T 2

12µ2
0

(
1− 2D

c
(1− ln(2))

)]
(7.7)

We note that this reduces to the correct form for the strong coupling limit.
Next, we find the energy per unit length to be

E

L
=

µ0D

3

[
1 +

π2T 2

4µ2
0

g

]

=
π2D3

3
− 4π2D4

3c
(1− ln(2)) +

T 2

12D

(
1 +

2D
c

(1− ln(2))
)

(7.8)

which for zero temperature has the same result as equation 5.31, but otherwise extends
this result to low temperatures.

Finally, the heat capacity per unit length at constant volume (length) is given by

Cv

L
=

DTg

2µ0

[
π2

3
− 3ζ(3)(1− g)

T

µ0
+ . . .

]

=
T

6D

(
1 +

2D
c

(1− ln(2))
)
− 3ζ(3)T 2

π4D2c
(1− ln(2)) (7.9)

In the strong coupling limit, we regain equation 5.11, as required. This shows that unlike
the strong coupling limit which had no T 2 dependence, we can expect a T 2 term to
appear in the heat capacity. This equation represents a significant enhancement over
results previously derived.

Thus, we have presented results from the fractional exclusion statistics formulation for
the spinor Bose gas with zero magnetisation. The results agree with previous working, and
extend most results beyond what was previously known. In this sense, where non-mutual
statistics may be approximated, fractional exclusion statistics provides an excellent means
of calculating thermodynamic quantities.

Given the similarity of the form of the statistical interaction g to the charge density ρ,
it is possible that similar expressions may be found for arbitrary magnetisations through
the use of the Wiener-Hopf method. This would then present an exciting new method of
calculating low temperature thermodynamic properties with significant benefits over other
methods.
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Chapter 8

Conclusions and Further Research

8.1 Conclusions

This thesis has presented a comprehensive analysis of the exact Bethe ansatz solution
for the spinor Bose gas, starting with the derivation of the Bethe ansatz equations. Two
versions of the thermodynamic Bethe ansatz equations were developed, both assuming the
string hypothesis and real spin rapidities. The free energy was written as a function of
the solution to the thermodynamic Bethe ansatz equations.

The behaviour of the system at the limiting regimes of zero temperature and c = ∞
was analysed, where original derivations of density functions for strong and weak coupling
regimes with no spin were presented, and the effects of adding spin rapidities to the
system were explored. An expansion for the free energy in the strong coupling limit was
also presented. The process of fermionisation was discussed, and ground state energies for
the spinless and zero magnetisation regimes were derived.

A new approximation was developed which allowed the solution to the thermodynamic
Bethe ansatz equations to be found in the strong coupling regime, to order 1/c. The
thermodynamic Bethe ansatz equations in the low temperature approximation suggested
by Hatsugai et al. were used, and the resulting expression for the free energy was expanded
for low temperatures to order T 2. Using the free energy, the chemical potential and
the heat capacity at constant volume were derived as a function of temperature. The
significance of these expressions is that a first order correction to the strong coupling limit
was obtained, which shows the effect of using spinor particles over spinless particles.

An overview of fractional exclusion statistics was presented, and specific details on
Haldane exclusion statistics were given. The ability to calculate thermodynamic quanti-
ties for non-mutual statistical interactions from Haldane exclusion statistics was noted.
The statistical interaction for the spinless Bose gas first presented by Bernard and Wu
was derived, and why attempts to construct an equivalent statistical interaction in multi-
component models have failed was discussed. A special case for the spinor Bose gas in
which a non-mutual statistical interaction could be approximated was found, and expan-
sions for the energy, heat capacity and chemical potential were derived to higher order than
previously possible for that particular system. It was concluded that obtaining a general
statistical interaction is only useful for classification purposes and in the rare cases when
non-mutual statistics may be obtained.
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8.2 Further Research

Throughout this thesis, we have identified many areas that may be further investigated.
Here we present some of the more relevant aspects of these areas.

In our derivation of the chemical potential, we approximated its evolution with tem-
perature, and did not obtain M/N dependence. The correct chemical potential could be
found by solving the Bethe ansatz equations in integral form, as described in Section 6.7.
This solution would also provide the magnetisation at temperature T .

Another important issue that should be addressed is exactly where the ln(φ) term in
equation 6.44 arises from, and whether or not this contradicts the work of Gu et al. If
the constant term should be omitted, then the results of Chapter 6 will agree with the
limiting cases derived in Chapter 5.

Another step which may be taken is to investigate the Wiener-Hopf method and
its solutions for the integral Bethe ansatz equations, in order to find the spinon root
and hole density. If solutions similar to those for M = N/2 can be found, it may be
possible to approximate a non-mutual statistical interaction for the low temperature and
strong coupling regime, which would provide a new method for finding thermodynamical
information for low temperatures. Furthermore, should the statistical interaction be
written in terms of M/N , then the free energy may be minimised over the magnetisation,
achieving the magnetisation as a function of temperature.

Bethe ansatz solvable quantum gases are part of a field of active research, which
comprises of a number of aspects which were beyond the scope of this thesis. These areas
include:

• Magnetic susceptibility, which may be calculated from the free energy when taking
into account an external field

• Waves motion. By considering single particle excitations, velocities of both particle
waves and spin waves may be calculated, and effective masses for single particles (be
they actual particles or pseudoparticles) may be obtained.

• Magnetisation as a function of external field. As discussed at the end of Chapter 6,
one can also consider how the magnetisation of the system behaves for different ex-
ternal field strengths at zero temperature. The hysteresis effect may be investigated
in this system.

• 3 level systems. Although we have only considered a two level system, it is possible
to consider three level systems, for which more conventional (spin-1) bosons may be
used experimentally. Li et al. have briefly considered the thermodynamics of this
system, concentrating mostly on the strong coupling limit. A 1/c correction term
has not yet been derived for this model.

• Fermions. While we have used bosonic wavefunction symmetries in our model, it
is also possible to construct a spinor Fermi gas. The equations for this model are
slightly less complicated, but still remain an area of active investigation.



Appendix A

Sommerfeld’s Lemma

In Fermi-Dirac statistics, there are a number of integrals of the form

Fn(ξ) =
∫ ∞

0

xn−1 dx
ex−ξ + 1

where ξ ranges from −∞ to ∞, and n is usually, although not necessarily, a half-integer.
Pathria [44] provides an excellent treatment of integrals of this type in Appendix E, which
we have briefly reproduced here.

For ξ large and negative, the integrand may be expanded in powers of e−ξ, giving

Fn(ξ) ≈ Γ(n)

(
e−ξ − e−2ξ

2n
+

e−3ξ

3n
+ . . .

)

where Γ(n) is the usual gamma function.
On the other end of the scale, for ξ large and positive, the integral is then dominated

by the denominator of the integrand (ex−ξ + 1)−1, which has limiting values of zero as
x → ∞, and close to one, as x → 0. The departure from these limiting values is only of
significance in the neighbourhood of x = ξ, whose width is of a much smaller order than
the order of the entire integral. Thus, for a first order approximation, we can replace the
curve with a step function.

Sommerfeld (1928) furthered this approach through an expansion which arrives at
Riemann zeta functions, giving the approximation

Fn(ξ) ≈ ξn

n

(
1 + n(n− 1)

π2

6
1
ξ2

+ n(n− 1)(n− 2)(n− 3)
7π4

360
1
ξ4

+ . . .

)

This is known as Sommerfeld’s Lemma. It is curious to note in the context of this thesis
that Sommerfeld was Hans Bethe’s Ph.D. supervisor.
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Appendix B

Glossary

BAE Bethe Ansatz Equations, see below.

Bethe Ansatz A method for solving one-dimensional problems by using a trial wave-
function composed of sums of travelling waves.

Bethe Ansatz Equations A set of non-linear coupled equations, usually the product of
numerous fractions, which provide restrictions on the rapidities in the system.

c The strength of the δ-function interaction between particles in the Hamiltonian for
the system we are considering. Low values of c corresponding to a weak coupling
regime, while high values correspond to a strong coupling regime. At c = 0, there is
no interaction, and so free bosons are obtained, with an internal degree of freedom.
At c = ∞, the spin and charge components decouple, leaving effectively free spinless
fermions.

Charge Rapidity Also known as a pseudomomentum value, charge rapidities are usually
denoted by ki, and arise as eigenvalues from the Bethe ansatz trial function. They
are usually related to the energy and momentum of a system.

Excluson Exclusons are particles which obey Haldane exclusion statistics.

Fermionisation The process by which bosons acquire fermionic properties as the repul-
sive potential between bosons is increased.

Fractional Exclusion Statistics A form of generalised statistics that allows statistics
other than Bose-Einstein and Fermi-Dirac statistics.

g-on gas A gas of particles which have only non-mutual statistics.

Haldane Exclusion Statistics A form of fractional exclusion statistics in which the
change in the number of vacant positions of a species is proportional to the change
in the number of particles filling all species.

M Total number of particles in the spin-↓ state.

Magnetisation The total spin of the system, which is proportional to N − 2M .

Mutual Statistics In fractional exclusion statistics, mutual statistics occurs when one
species may influence another, and so there is a mutual statistical interaction. Non-
mutual statistics occurs when each species only influences particles of the same
species, and so we may write gµν = δµνgµ.
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N Total number of particles in the system.

Rapidities Variables in the system which are associated with degrees of freedom, arising
as eigenvalues for various equations.

Sommerfeld’s Lemma An approximation for a specific form of integral. See Appendix
A.

Spin Rapidities Variables that arise as eigenvalues in the derivation of the Bethe ansatz
equations. These numbers relate to the energy of spin-wave excitations, and influence
a system by altering the scattering processes, and thus the energy of the system.

Spinor Bose Gas A gas of bosons which each have an internal degree of freedom with
SU(2) symmetry, i.e., a spin-↑/spin-↓ structure.

String Hypothesis The hypothesis that in the thermodynamic limit of a Bethe ansatz
solvable model with spin rapidities, the spin rapidities will form “strings” in the
complex plane, pairing up to form a bound state.

Strong/Weak Coupling Regime The strong coupling regime is the regime for which
the repulsive interaction is strong, or c is large. The weak coupling regime is the
regime in which the repulsive interaction is weak, or c is small.

TBA Thermodynamic Bethe Ansatz, see below.

Thermodynamic Bethe Ansatz A method introduced by Yang and Yang [28] for ar-
riving at the equilibrium conditions of a system from the Bethe ansatz equations.
Usually referred to as the Thermodynamic Bethe Ansatz equations, or the Thermo-
dynamic Bethe Ansatz method.

Thermodynamic Limit The limit of a system in which N and V are taken to ∞,
but in a ratio such that the particle density N/V is constant. It is assumed that a
physical system has such a large number of particles that the probabilistic behaviour
becomes statistical, and so the thermodynamic limit of a many-body model describes
a physical system.
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